纤维桥接对模式 I 疲劳分层扩展的影响--第二部分:内聚区模型

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL Fatigue & Fracture of Engineering Materials & Structures Pub Date : 2024-07-09 DOI:10.1111/ffe.14382
Hila Ben Gur, Leslie Banks-Sills
{"title":"纤维桥接对模式 I 疲劳分层扩展的影响--第二部分:内聚区模型","authors":"Hila Ben Gur,&nbsp;Leslie Banks-Sills","doi":"10.1111/ffe.14382","DOIUrl":null,"url":null,"abstract":"<p>This is Part II of a series of two papers in which the effect of fiber bridging on fatigue delamination propagation is assessed. In Part I, unidirectional double cantilever beam specimens composed of the carbon fiber-reinforced polymer prepreg AS4/8552 were tested by means of fatigue cycling. Fiber bridging in beam specimens composed of unidirectional plies causes the apparent fatigue delamination curves to exhibit growth which is slower than that for the case when fiber bridging does not occur. Generally, fiber bridging does not occur in laminate structures. In Part II of this study, a cohesive zone model (CZM) is developed and used to carry out finite element analyses to simulate the experiments. The CZM is employed to quantify and eliminate the contribution of fiber bridging to the fatigue delamination growth curves. In this way, more realistic results are obtained. These results are compared to an upper bound curve determined in Part I.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 10","pages":"3529-3545"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14382","citationCount":"0","resultStr":"{\"title\":\"The effect of fiber bridging on mode I fatigue delamination propagation—Part II: Cohesive zone model\",\"authors\":\"Hila Ben Gur,&nbsp;Leslie Banks-Sills\",\"doi\":\"10.1111/ffe.14382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This is Part II of a series of two papers in which the effect of fiber bridging on fatigue delamination propagation is assessed. In Part I, unidirectional double cantilever beam specimens composed of the carbon fiber-reinforced polymer prepreg AS4/8552 were tested by means of fatigue cycling. Fiber bridging in beam specimens composed of unidirectional plies causes the apparent fatigue delamination curves to exhibit growth which is slower than that for the case when fiber bridging does not occur. Generally, fiber bridging does not occur in laminate structures. In Part II of this study, a cohesive zone model (CZM) is developed and used to carry out finite element analyses to simulate the experiments. The CZM is employed to quantify and eliminate the contribution of fiber bridging to the fatigue delamination growth curves. In this way, more realistic results are obtained. These results are compared to an upper bound curve determined in Part I.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 10\",\"pages\":\"3529-3545\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14382\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14382\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14382","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文是两篇系列论文的第二部分,其中评估了纤维桥接对疲劳分层扩展的影响。在第一部分中,通过疲劳循环测试了由碳纤维增强聚合物预浸料 AS4/8552 组成的单向双悬臂梁试样。在由单向层组成的梁试样中,纤维桥接会导致表观疲劳分层曲线的增长速度低于未发生纤维桥接时的增长速度。一般来说,层压结构中不会出现纤维桥接。本研究的第二部分开发了内聚区模型(CZM),并利用该模型进行有限元分析以模拟实验。CZM 用于量化和消除纤维桥接对疲劳分层增长曲线的影响。通过这种方法,可以获得更真实的结果。这些结果与第一部分中确定的上限曲线进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of fiber bridging on mode I fatigue delamination propagation—Part II: Cohesive zone model

This is Part II of a series of two papers in which the effect of fiber bridging on fatigue delamination propagation is assessed. In Part I, unidirectional double cantilever beam specimens composed of the carbon fiber-reinforced polymer prepreg AS4/8552 were tested by means of fatigue cycling. Fiber bridging in beam specimens composed of unidirectional plies causes the apparent fatigue delamination curves to exhibit growth which is slower than that for the case when fiber bridging does not occur. Generally, fiber bridging does not occur in laminate structures. In Part II of this study, a cohesive zone model (CZM) is developed and used to carry out finite element analyses to simulate the experiments. The CZM is employed to quantify and eliminate the contribution of fiber bridging to the fatigue delamination growth curves. In this way, more realistic results are obtained. These results are compared to an upper bound curve determined in Part I.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
期刊最新文献
Issue Information Study on the Deformation and Energy Evolution of Skarn With Marble Band of Different Orientations Under Cyclic Loading: A Lab-Scale Study Competitive Fracture Mechanism and Microstructure-Related Life Assessment of GH4169 Superalloy in High and Very High Cycle Fatigue Regimes Natural Seawater Impact on Crack Propagation and Fatigue Behavior of Welded Nickel Aluminum Bronze Phase field numerical strategies for positive volumetric strain energy fractures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1