{"title":"推进森林火灾管理:探索传感器网络、数据挖掘技术和 SVM 预测算法","authors":"Shuo Zhang, Mengya Pan","doi":"10.54963/ptnd.v3i2.271","DOIUrl":null,"url":null,"abstract":"Forest-fire is a pressing global problem that has far-reaching effects on human life and the environment, with climate change exacerbating their frequency and intensity. There is an urgent need for advanced predictive systems to mitigate these impacts. To address this issue, this study introduces a forest-fire prediction framework integrating wireless sensor networks (WSNs), data analysis, and machine learning. Sensor nodes deployed in a forest area collected real-time meteorological data, which was transmitted using LoRaWAN technology. Data mining techniques prepared the data for analysis using the SVM algorithm, revealing relationships between meteorological parameters and wildfire risk. The SVM model demonstrated an accuracy of 86% in classifying forest-fire risk levels based on temperature, humidity, wind speed, and rainfall data. The integrated framework of WSNs and the SVM algorithm provides a high-accuracy model for forest-fire risk prediction. The model is compared to the Canadian Forest Fire Hazard Rating System to validate its accuracy, demonstrating strong agreement with historical records and reports. The model's practical implications include efficient management, early detection, and prevention strategies. However, the model's limitations suggest avenues for future research, we should consider broader geographic applications and using advanced machine-learning methods to enhance the model's predictive capabilities.","PeriodicalId":325067,"journal":{"name":"Prevention and Treatment of Natural Disasters","volume":"123 49","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Forest-Fire Management: Exploring Sensor Networks, Data Mining Techniques, and SVM Algorithm for Prediction\",\"authors\":\"Shuo Zhang, Mengya Pan\",\"doi\":\"10.54963/ptnd.v3i2.271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest-fire is a pressing global problem that has far-reaching effects on human life and the environment, with climate change exacerbating their frequency and intensity. There is an urgent need for advanced predictive systems to mitigate these impacts. To address this issue, this study introduces a forest-fire prediction framework integrating wireless sensor networks (WSNs), data analysis, and machine learning. Sensor nodes deployed in a forest area collected real-time meteorological data, which was transmitted using LoRaWAN technology. Data mining techniques prepared the data for analysis using the SVM algorithm, revealing relationships between meteorological parameters and wildfire risk. The SVM model demonstrated an accuracy of 86% in classifying forest-fire risk levels based on temperature, humidity, wind speed, and rainfall data. The integrated framework of WSNs and the SVM algorithm provides a high-accuracy model for forest-fire risk prediction. The model is compared to the Canadian Forest Fire Hazard Rating System to validate its accuracy, demonstrating strong agreement with historical records and reports. The model's practical implications include efficient management, early detection, and prevention strategies. However, the model's limitations suggest avenues for future research, we should consider broader geographic applications and using advanced machine-learning methods to enhance the model's predictive capabilities.\",\"PeriodicalId\":325067,\"journal\":{\"name\":\"Prevention and Treatment of Natural Disasters\",\"volume\":\"123 49\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prevention and Treatment of Natural Disasters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54963/ptnd.v3i2.271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prevention and Treatment of Natural Disasters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54963/ptnd.v3i2.271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advancing Forest-Fire Management: Exploring Sensor Networks, Data Mining Techniques, and SVM Algorithm for Prediction
Forest-fire is a pressing global problem that has far-reaching effects on human life and the environment, with climate change exacerbating their frequency and intensity. There is an urgent need for advanced predictive systems to mitigate these impacts. To address this issue, this study introduces a forest-fire prediction framework integrating wireless sensor networks (WSNs), data analysis, and machine learning. Sensor nodes deployed in a forest area collected real-time meteorological data, which was transmitted using LoRaWAN technology. Data mining techniques prepared the data for analysis using the SVM algorithm, revealing relationships between meteorological parameters and wildfire risk. The SVM model demonstrated an accuracy of 86% in classifying forest-fire risk levels based on temperature, humidity, wind speed, and rainfall data. The integrated framework of WSNs and the SVM algorithm provides a high-accuracy model for forest-fire risk prediction. The model is compared to the Canadian Forest Fire Hazard Rating System to validate its accuracy, demonstrating strong agreement with historical records and reports. The model's practical implications include efficient management, early detection, and prevention strategies. However, the model's limitations suggest avenues for future research, we should consider broader geographic applications and using advanced machine-learning methods to enhance the model's predictive capabilities.