{"title":"非晶基质单原子催化剂在电催化领域的最新进展","authors":"Cheng’ao Liu, Yanping Cui, Yao Zhou","doi":"10.20517/energymater.2024.41","DOIUrl":null,"url":null,"abstract":"Single-atom catalysts (SACs) have emerged as a focal point in energy catalytic conversion due to their remarkable atomic efficiency and catalytic performance. The challenge lies in efficiently anchoring active sites on a specific substrate to prevent agglomeration, maximizing their effectiveness. Substrate characteristics play a pivotal role in shaping the catalytic performance of SACs, influencing the dispersion and stability of single atoms. In recent years, amorphous materials have gained attention as substrates due to their unique surface structure and abundance of unsaturated coordination sites, offering an ideal platform for capturing and anchoring single atoms effectively, thus enhancing catalytic activity. To clarify the interaction between single atoms and amorphous substrates, this review outlines amorphization methods, the mechanism of single-atom anchoring and the characterization methods of amorphous SACs. Subsequently, it summarizes the physical properties and electrocatalytic mechanisms of amorphous materials. Then, interactions between single atoms and amorphous substrates are categorized and summarized. Finally, the paper consolidates the research progress of amorphous SACs and outlines future development prospects. By exploring the synergistic relationship between single atoms and amorphous substrates, this review aims to deepen the understanding of their interaction mechanisms, thereby propelling advancements in SACs for energy catalytic conversion.","PeriodicalId":516209,"journal":{"name":"Energy Materials","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The recent progress of single-atom catalysts on amorphous substrates for electrocatalysis\",\"authors\":\"Cheng’ao Liu, Yanping Cui, Yao Zhou\",\"doi\":\"10.20517/energymater.2024.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-atom catalysts (SACs) have emerged as a focal point in energy catalytic conversion due to their remarkable atomic efficiency and catalytic performance. The challenge lies in efficiently anchoring active sites on a specific substrate to prevent agglomeration, maximizing their effectiveness. Substrate characteristics play a pivotal role in shaping the catalytic performance of SACs, influencing the dispersion and stability of single atoms. In recent years, amorphous materials have gained attention as substrates due to their unique surface structure and abundance of unsaturated coordination sites, offering an ideal platform for capturing and anchoring single atoms effectively, thus enhancing catalytic activity. To clarify the interaction between single atoms and amorphous substrates, this review outlines amorphization methods, the mechanism of single-atom anchoring and the characterization methods of amorphous SACs. Subsequently, it summarizes the physical properties and electrocatalytic mechanisms of amorphous materials. Then, interactions between single atoms and amorphous substrates are categorized and summarized. Finally, the paper consolidates the research progress of amorphous SACs and outlines future development prospects. By exploring the synergistic relationship between single atoms and amorphous substrates, this review aims to deepen the understanding of their interaction mechanisms, thereby propelling advancements in SACs for energy catalytic conversion.\",\"PeriodicalId\":516209,\"journal\":{\"name\":\"Energy Materials\",\"volume\":\" 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2024.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2024.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The recent progress of single-atom catalysts on amorphous substrates for electrocatalysis
Single-atom catalysts (SACs) have emerged as a focal point in energy catalytic conversion due to their remarkable atomic efficiency and catalytic performance. The challenge lies in efficiently anchoring active sites on a specific substrate to prevent agglomeration, maximizing their effectiveness. Substrate characteristics play a pivotal role in shaping the catalytic performance of SACs, influencing the dispersion and stability of single atoms. In recent years, amorphous materials have gained attention as substrates due to their unique surface structure and abundance of unsaturated coordination sites, offering an ideal platform for capturing and anchoring single atoms effectively, thus enhancing catalytic activity. To clarify the interaction between single atoms and amorphous substrates, this review outlines amorphization methods, the mechanism of single-atom anchoring and the characterization methods of amorphous SACs. Subsequently, it summarizes the physical properties and electrocatalytic mechanisms of amorphous materials. Then, interactions between single atoms and amorphous substrates are categorized and summarized. Finally, the paper consolidates the research progress of amorphous SACs and outlines future development prospects. By exploring the synergistic relationship between single atoms and amorphous substrates, this review aims to deepen the understanding of their interaction mechanisms, thereby propelling advancements in SACs for energy catalytic conversion.