多轴实时混合模拟基准的鲁棒分散自适应补偿

IF 2.2 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Frontiers in Built Environment Pub Date : 2024-07-08 DOI:10.3389/fbuil.2024.1394952
María Quiroz, Cristóbal Gálmez, Gaston A. Fermandois
{"title":"多轴实时混合模拟基准的鲁棒分散自适应补偿","authors":"María Quiroz, Cristóbal Gálmez, Gaston A. Fermandois","doi":"10.3389/fbuil.2024.1394952","DOIUrl":null,"url":null,"abstract":"Real-time hybrid simulation (RTHS) is a powerful and highly reliable technique integrating experimental testing with numerical modeling for studying rate-dependent components under realistic conditions. One of its key advantages is its cost-effectiveness compared to large-scale shake table testing, which is attained by selectively conducting experimental testing on critical parts of the analyzed structure, thus avoiding the assembly of the entire system. One of the fundamental advancements in RTHS methods is the development of multi-dimensional dynamic testing. In particular, multi-axial RTHS (maRTHS) aims to prescribe multi-degree-of-freedom (MDOF) loading from the numerical substructure over the test specimen. Under these conditions, synchronization is a significant challenge in multiple actuator loading assemblies. This study proposes a robust and decentralized adaptive compensation (RoDeAC) method for the next-generation maRTHS benchmark problem. An initial calibration of the dynamic compensator is carried out through offline numerical simulations. Subsequently, the compensator parameters are updated in real-time during the test using a recursive least squares adaptive algorithm. The results demonstrate outstanding performance in experiment synchronization, even in uncertain conditions, due to the variability of reference structures, seismic loading, and multi-actuator properties. Notably, this achievement is accomplished without needing detailed information about the test specimen, streamlining the procedure and reducing the risk of specimen deterioration. Additionally, the tracking performance of the tests closely aligns with the reference structure, further affirming the excellence of the outcomes.","PeriodicalId":37112,"journal":{"name":"Frontiers in Built Environment","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust decentralized adaptive compensation for the multi-axial real-time hybrid simulation benchmark\",\"authors\":\"María Quiroz, Cristóbal Gálmez, Gaston A. Fermandois\",\"doi\":\"10.3389/fbuil.2024.1394952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time hybrid simulation (RTHS) is a powerful and highly reliable technique integrating experimental testing with numerical modeling for studying rate-dependent components under realistic conditions. One of its key advantages is its cost-effectiveness compared to large-scale shake table testing, which is attained by selectively conducting experimental testing on critical parts of the analyzed structure, thus avoiding the assembly of the entire system. One of the fundamental advancements in RTHS methods is the development of multi-dimensional dynamic testing. In particular, multi-axial RTHS (maRTHS) aims to prescribe multi-degree-of-freedom (MDOF) loading from the numerical substructure over the test specimen. Under these conditions, synchronization is a significant challenge in multiple actuator loading assemblies. This study proposes a robust and decentralized adaptive compensation (RoDeAC) method for the next-generation maRTHS benchmark problem. An initial calibration of the dynamic compensator is carried out through offline numerical simulations. Subsequently, the compensator parameters are updated in real-time during the test using a recursive least squares adaptive algorithm. The results demonstrate outstanding performance in experiment synchronization, even in uncertain conditions, due to the variability of reference structures, seismic loading, and multi-actuator properties. Notably, this achievement is accomplished without needing detailed information about the test specimen, streamlining the procedure and reducing the risk of specimen deterioration. Additionally, the tracking performance of the tests closely aligns with the reference structure, further affirming the excellence of the outcomes.\",\"PeriodicalId\":37112,\"journal\":{\"name\":\"Frontiers in Built Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbuil.2024.1394952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbuil.2024.1394952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

实时混合模拟(RTHS)是一种功能强大且高度可靠的技术,它将实验测试与数值建模相结合,用于在现实条件下研究与速率相关的部件。与大规模振动台试验相比,RTHS 的主要优势之一是成本效益高,可以有选择地对被分析结构的关键部分进行试验,从而避免整个系统的组装。RTHS 方法的基本进步之一是多维动态测试的发展。特别是多轴 RTHS(maRTHS),其目的是在测试样本上预设来自数值子结构的多自由度(MDOF)加载。在这些条件下,同步是多致动器加载组件面临的重大挑战。本研究针对新一代 maRTHS 基准问题提出了一种鲁棒分散自适应补偿(RoDeAC)方法。通过离线数值模拟对动态补偿器进行初始校准。随后,在测试过程中使用递归最小二乘自适应算法实时更新补偿器参数。结果表明,即使在不确定的条件下,由于参考结构、地震荷载和多执行器特性的变化,实验同步也能表现出色。值得注意的是,这一成果是在不需要测试样本详细信息的情况下实现的,从而简化了程序并降低了样本退化的风险。此外,测试的跟踪性能与参考结构密切吻合,进一步证实了结果的卓越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust decentralized adaptive compensation for the multi-axial real-time hybrid simulation benchmark
Real-time hybrid simulation (RTHS) is a powerful and highly reliable technique integrating experimental testing with numerical modeling for studying rate-dependent components under realistic conditions. One of its key advantages is its cost-effectiveness compared to large-scale shake table testing, which is attained by selectively conducting experimental testing on critical parts of the analyzed structure, thus avoiding the assembly of the entire system. One of the fundamental advancements in RTHS methods is the development of multi-dimensional dynamic testing. In particular, multi-axial RTHS (maRTHS) aims to prescribe multi-degree-of-freedom (MDOF) loading from the numerical substructure over the test specimen. Under these conditions, synchronization is a significant challenge in multiple actuator loading assemblies. This study proposes a robust and decentralized adaptive compensation (RoDeAC) method for the next-generation maRTHS benchmark problem. An initial calibration of the dynamic compensator is carried out through offline numerical simulations. Subsequently, the compensator parameters are updated in real-time during the test using a recursive least squares adaptive algorithm. The results demonstrate outstanding performance in experiment synchronization, even in uncertain conditions, due to the variability of reference structures, seismic loading, and multi-actuator properties. Notably, this achievement is accomplished without needing detailed information about the test specimen, streamlining the procedure and reducing the risk of specimen deterioration. Additionally, the tracking performance of the tests closely aligns with the reference structure, further affirming the excellence of the outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Built Environment
Frontiers in Built Environment Social Sciences-Urban Studies
CiteScore
4.80
自引率
6.70%
发文量
266
期刊最新文献
A framework for computer vision for virtual-realistic multi-axial real-time hybrid simulation Reassessment of natural expansive materials and their impact on freeze-thaw cycles in geotechnical engineering: a review Effectiveness of housing design features in malaria prevention: architects’ perspective Numerical studies on low-strain integrity testing of cast-in-place pile Phygital workspace: a systematic review in developing a new typological work environment using XR technology to reduce the carbon footprint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1