{"title":"基于 ADMM 的动态共识策略,用于电网中带有需求响应的经济调度","authors":"Bhuban Dhamala, Kabindra Pokharel, N. Karki","doi":"10.3390/electricity5030023","DOIUrl":null,"url":null,"abstract":"This paper introduces a dynamic consensus-based economic dispatch (ED) algorithm utilizing the Alternating Direction Method of Multipliers (ADMM) to optimize real-time pricing and generation/demand decisions within a decentralized energy management framework. The increasing complexity of modern energy markets, driven by the proliferation of Distributed Energy Resources (DER) and variable demands from hybrid electric vehicles, necessitates a departure from traditional centralized dispatch methods. This research proposes a novel ADMM-based solution tailored for non-responsive and responsive demand units that integrates demand response mechanisms to adaptively manage real-time fluctuations while enhancing security and privacy through distributed data management. The testing of the algorithm on the IEEE 39 bus system under various load conditions over 24 h demonstrated the algorithm’s effectiveness in handling traditional and renewable energy sources, particularly highlighting the economic benefits of shifting controllable loads to periods of low-cost renewable availability. The findings underscore the algorithm’s potential to reduce energy costs, enhance energy efficiency, and offer a scalable solution across diverse grid systems, contributing significantly to advancing global energy policy and sustainable management practices.","PeriodicalId":69873,"journal":{"name":"Electricity","volume":" September","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Consensus-Based ADMM Strategy for Economic Dispatch with Demand Response in Power Grids\",\"authors\":\"Bhuban Dhamala, Kabindra Pokharel, N. Karki\",\"doi\":\"10.3390/electricity5030023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a dynamic consensus-based economic dispatch (ED) algorithm utilizing the Alternating Direction Method of Multipliers (ADMM) to optimize real-time pricing and generation/demand decisions within a decentralized energy management framework. The increasing complexity of modern energy markets, driven by the proliferation of Distributed Energy Resources (DER) and variable demands from hybrid electric vehicles, necessitates a departure from traditional centralized dispatch methods. This research proposes a novel ADMM-based solution tailored for non-responsive and responsive demand units that integrates demand response mechanisms to adaptively manage real-time fluctuations while enhancing security and privacy through distributed data management. The testing of the algorithm on the IEEE 39 bus system under various load conditions over 24 h demonstrated the algorithm’s effectiveness in handling traditional and renewable energy sources, particularly highlighting the economic benefits of shifting controllable loads to periods of low-cost renewable availability. The findings underscore the algorithm’s potential to reduce energy costs, enhance energy efficiency, and offer a scalable solution across diverse grid systems, contributing significantly to advancing global energy policy and sustainable management practices.\",\"PeriodicalId\":69873,\"journal\":{\"name\":\"Electricity\",\"volume\":\" September\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electricity\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3390/electricity5030023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electricity","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3390/electricity5030023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Consensus-Based ADMM Strategy for Economic Dispatch with Demand Response in Power Grids
This paper introduces a dynamic consensus-based economic dispatch (ED) algorithm utilizing the Alternating Direction Method of Multipliers (ADMM) to optimize real-time pricing and generation/demand decisions within a decentralized energy management framework. The increasing complexity of modern energy markets, driven by the proliferation of Distributed Energy Resources (DER) and variable demands from hybrid electric vehicles, necessitates a departure from traditional centralized dispatch methods. This research proposes a novel ADMM-based solution tailored for non-responsive and responsive demand units that integrates demand response mechanisms to adaptively manage real-time fluctuations while enhancing security and privacy through distributed data management. The testing of the algorithm on the IEEE 39 bus system under various load conditions over 24 h demonstrated the algorithm’s effectiveness in handling traditional and renewable energy sources, particularly highlighting the economic benefits of shifting controllable loads to periods of low-cost renewable availability. The findings underscore the algorithm’s potential to reduce energy costs, enhance energy efficiency, and offer a scalable solution across diverse grid systems, contributing significantly to advancing global energy policy and sustainable management practices.