Katharine R. B. Phillips, Alexander G. Kuzma-Hunt, Michael S. Neal, Connie Lisle, Hariharan Sribalachandran, Ronald F. Carter, Shilpa Amin, M. Karnis, Mehrnoosh Faghih
{"title":"人类胚胎非整倍体植入前遗传检测微创方法(mi-PGT-A)的时间评估","authors":"Katharine R. B. Phillips, Alexander G. Kuzma-Hunt, Michael S. Neal, Connie Lisle, Hariharan Sribalachandran, Ronald F. Carter, Shilpa Amin, M. Karnis, Mehrnoosh Faghih","doi":"10.3390/reprodmed5030011","DOIUrl":null,"url":null,"abstract":"Preimplantation genetic testing for aneuploidy (PGT-A) has become a useful approach for embryo selection following IVF and ICSI. However, the biopsy process associated with PGT-A is expensive, prone to errors in embryo ploidy determination, and potentially damaging, impacting competence and implantation potential. Therefore, a less invasive method of PGT-A would be desirable and more cost-effective. Noninvasive methods for PGT-A (ni-PGT-A) have been well-studied but present limitations in terms of cf-DNA origin and diagnostic accuracy. Minimally invasive pre-implantation genetic testing (mi-PGT-A) for frozen-thawed embryo transfer is a promising, less studied approach that utilizes a combination of spent culture media (SCM) and blastocoelic fluid (BF)-derived cell-free (CF)-DNA for genetic testing. This study aimed to optimize the effectiveness of mi-PGT-A for aneuploidy diagnosis by investigating the optimal temporal sequence for this protocol. SCM+BF was collected at either 48 or 72 h of culture after thawing day 3 preimplantation embryos. cf-DNA in the SCM+BF was amplified, analyzed by next-generation sequencing (NGS) and compared with results from the corresponding whole embryos (WEs) obtained from human embryos donated for research. Fifty-three (42 expanded blastocysts, 9 early blastocysts, and 2 morula) WE and SCM+BF samples were analyzed and compared. The overall concordance rate between SCM+BF and WE was 60%. Gender and ploidy concordance improved with extended culture time from 48 h (73% and 45%) to 72 h (100% and 64%), respectively. These results demonstrate that SCM+BF-derived cf-DNA can be successfully used for mi-PGT-A. Our findings indicate that longer embryo culture time prior to SCM+BF-derived cf-DNA analysis improves DNA detection rate and concordance with WEs and decreases the proportion of false positive results.","PeriodicalId":516007,"journal":{"name":"Reproductive Medicine","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Evaluation of a Minimally Invasive Method of Preimplantation Genetic Testing for Aneuploidy (mi-PGT-A) in Human Embryos\",\"authors\":\"Katharine R. B. Phillips, Alexander G. Kuzma-Hunt, Michael S. Neal, Connie Lisle, Hariharan Sribalachandran, Ronald F. Carter, Shilpa Amin, M. Karnis, Mehrnoosh Faghih\",\"doi\":\"10.3390/reprodmed5030011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preimplantation genetic testing for aneuploidy (PGT-A) has become a useful approach for embryo selection following IVF and ICSI. However, the biopsy process associated with PGT-A is expensive, prone to errors in embryo ploidy determination, and potentially damaging, impacting competence and implantation potential. Therefore, a less invasive method of PGT-A would be desirable and more cost-effective. Noninvasive methods for PGT-A (ni-PGT-A) have been well-studied but present limitations in terms of cf-DNA origin and diagnostic accuracy. Minimally invasive pre-implantation genetic testing (mi-PGT-A) for frozen-thawed embryo transfer is a promising, less studied approach that utilizes a combination of spent culture media (SCM) and blastocoelic fluid (BF)-derived cell-free (CF)-DNA for genetic testing. This study aimed to optimize the effectiveness of mi-PGT-A for aneuploidy diagnosis by investigating the optimal temporal sequence for this protocol. SCM+BF was collected at either 48 or 72 h of culture after thawing day 3 preimplantation embryos. cf-DNA in the SCM+BF was amplified, analyzed by next-generation sequencing (NGS) and compared with results from the corresponding whole embryos (WEs) obtained from human embryos donated for research. Fifty-three (42 expanded blastocysts, 9 early blastocysts, and 2 morula) WE and SCM+BF samples were analyzed and compared. The overall concordance rate between SCM+BF and WE was 60%. Gender and ploidy concordance improved with extended culture time from 48 h (73% and 45%) to 72 h (100% and 64%), respectively. These results demonstrate that SCM+BF-derived cf-DNA can be successfully used for mi-PGT-A. Our findings indicate that longer embryo culture time prior to SCM+BF-derived cf-DNA analysis improves DNA detection rate and concordance with WEs and decreases the proportion of false positive results.\",\"PeriodicalId\":516007,\"journal\":{\"name\":\"Reproductive Medicine\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/reprodmed5030011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/reprodmed5030011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal Evaluation of a Minimally Invasive Method of Preimplantation Genetic Testing for Aneuploidy (mi-PGT-A) in Human Embryos
Preimplantation genetic testing for aneuploidy (PGT-A) has become a useful approach for embryo selection following IVF and ICSI. However, the biopsy process associated with PGT-A is expensive, prone to errors in embryo ploidy determination, and potentially damaging, impacting competence and implantation potential. Therefore, a less invasive method of PGT-A would be desirable and more cost-effective. Noninvasive methods for PGT-A (ni-PGT-A) have been well-studied but present limitations in terms of cf-DNA origin and diagnostic accuracy. Minimally invasive pre-implantation genetic testing (mi-PGT-A) for frozen-thawed embryo transfer is a promising, less studied approach that utilizes a combination of spent culture media (SCM) and blastocoelic fluid (BF)-derived cell-free (CF)-DNA for genetic testing. This study aimed to optimize the effectiveness of mi-PGT-A for aneuploidy diagnosis by investigating the optimal temporal sequence for this protocol. SCM+BF was collected at either 48 or 72 h of culture after thawing day 3 preimplantation embryos. cf-DNA in the SCM+BF was amplified, analyzed by next-generation sequencing (NGS) and compared with results from the corresponding whole embryos (WEs) obtained from human embryos donated for research. Fifty-three (42 expanded blastocysts, 9 early blastocysts, and 2 morula) WE and SCM+BF samples were analyzed and compared. The overall concordance rate between SCM+BF and WE was 60%. Gender and ploidy concordance improved with extended culture time from 48 h (73% and 45%) to 72 h (100% and 64%), respectively. These results demonstrate that SCM+BF-derived cf-DNA can be successfully used for mi-PGT-A. Our findings indicate that longer embryo culture time prior to SCM+BF-derived cf-DNA analysis improves DNA detection rate and concordance with WEs and decreases the proportion of false positive results.