加强墨西哥圣地亚哥河流域降水量的地质统计估算

Atmósfera Pub Date : 2024-07-05 DOI:10.20937/atm.53334
J. R. Ávila-Carrasco, Hugo Enrique Júnez-Ferreira, Graciela del Socorro Herrera
{"title":"加强墨西哥圣地亚哥河流域降水量的地质统计估算","authors":"J. R. Ávila-Carrasco, Hugo Enrique Júnez-Ferreira, Graciela del Socorro Herrera","doi":"10.20937/atm.53334","DOIUrl":null,"url":null,"abstract":"Accurate precipitation estimation is crucial for understanding the hydrological cycle, its applications in basin-specific planning, and outliers event prediction. Multivariate geostatistics leverage correlated variables, such as terrain elevation and shoreline distance, to reduce estimation error uncertainty. However, the distinct characteristics of humid and dry seasons demand specific estimation approaches. Precise precipitation estimation poses a challenge in the vast and diverse Santiago River basin (SRB) along Mexico’s west coast. This study assessed precipitation estimates for dry and humid seasons using ordinary kriging and ordinary cokriging with altitude and shoreline distance as auxiliary variables. Evaluation of error metrics revealed superior results incorporating shoreline distance as a covariable in the wet month of July, especially after logarithmic transformation, yielding a 17% improvement in average standardized error compared to the univariate approach. Conversely, optimal results were achieved for the dry month (February) using ordinary kriging excluding outliers’ values, effectively reducing the average squared error.","PeriodicalId":382891,"journal":{"name":"Atmósfera","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing geostatistical precipitation estimations for the Santiago River basin, Mexico\",\"authors\":\"J. R. Ávila-Carrasco, Hugo Enrique Júnez-Ferreira, Graciela del Socorro Herrera\",\"doi\":\"10.20937/atm.53334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate precipitation estimation is crucial for understanding the hydrological cycle, its applications in basin-specific planning, and outliers event prediction. Multivariate geostatistics leverage correlated variables, such as terrain elevation and shoreline distance, to reduce estimation error uncertainty. However, the distinct characteristics of humid and dry seasons demand specific estimation approaches. Precise precipitation estimation poses a challenge in the vast and diverse Santiago River basin (SRB) along Mexico’s west coast. This study assessed precipitation estimates for dry and humid seasons using ordinary kriging and ordinary cokriging with altitude and shoreline distance as auxiliary variables. Evaluation of error metrics revealed superior results incorporating shoreline distance as a covariable in the wet month of July, especially after logarithmic transformation, yielding a 17% improvement in average standardized error compared to the univariate approach. Conversely, optimal results were achieved for the dry month (February) using ordinary kriging excluding outliers’ values, effectively reducing the average squared error.\",\"PeriodicalId\":382891,\"journal\":{\"name\":\"Atmósfera\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmósfera\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20937/atm.53334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmósfera","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20937/atm.53334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的降水估算对于了解水文循环、其在特定流域规划中的应用以及异常事件预测至关重要。多元地质统计学利用地形高程和海岸线距离等相关变量来减少估算误差的不确定性。然而,湿季和旱季的不同特点要求采用特定的估算方法。在墨西哥西海岸广阔而多样的圣地亚哥河流域(SRB),精确的降水估算是一项挑战。本研究以海拔高度和海岸线距离为辅助变量,使用普通克里金法和普通克里金法评估了旱季和雨季的降水量估计值。误差指标评估结果显示,将海岸线距离作为湿润月份七月份的协变量,效果更佳,特别是在对数变换后,平均标准化误差比单变量方法提高了 17%。相反,在干燥月份(2 月),使用普通克里金法剔除离群值后,取得了最佳结果,有效地减少了平均平方误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing geostatistical precipitation estimations for the Santiago River basin, Mexico
Accurate precipitation estimation is crucial for understanding the hydrological cycle, its applications in basin-specific planning, and outliers event prediction. Multivariate geostatistics leverage correlated variables, such as terrain elevation and shoreline distance, to reduce estimation error uncertainty. However, the distinct characteristics of humid and dry seasons demand specific estimation approaches. Precise precipitation estimation poses a challenge in the vast and diverse Santiago River basin (SRB) along Mexico’s west coast. This study assessed precipitation estimates for dry and humid seasons using ordinary kriging and ordinary cokriging with altitude and shoreline distance as auxiliary variables. Evaluation of error metrics revealed superior results incorporating shoreline distance as a covariable in the wet month of July, especially after logarithmic transformation, yielding a 17% improvement in average standardized error compared to the univariate approach. Conversely, optimal results were achieved for the dry month (February) using ordinary kriging excluding outliers’ values, effectively reducing the average squared error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of the Planetary Boundary Layer characteristics and its relation to air quality in the Metropolitan Area of Rio de Janeiro, Brazil Enhancing geostatistical precipitation estimations for the Santiago River basin, Mexico Lightning-rainfall relationship in El Niño and La Niña events during the Indian summer monsoon over central India An index for precipitation on the north coast of Peru using logistic regression Prediction of hydrological drought by the Standardized Precipitation Evapotranspiration Index in Chihuahua, Mexico, using machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1