计算阐明电磁对微流控蠕动纳米流体传输的影响:CFD、生物医学和纳米技术研究的交叉点

Q2 Mathematics CFD Letters Pub Date : 2024-07-05 DOI:10.37934/cfdl.16.11.3759
Hanumesh Vaidya, Rajashekhar Choudhari, Fateh Mebarek-Oudina, Kerehalli Vinayaka Prasad, Manjunatha Gudekote, Balachandra Hadimani, Sangeeta Kalal, Shivaleela
{"title":"计算阐明电磁对微流控蠕动纳米流体传输的影响:CFD、生物医学和纳米技术研究的交叉点","authors":"Hanumesh Vaidya, Rajashekhar Choudhari, Fateh Mebarek-Oudina, Kerehalli Vinayaka Prasad, Manjunatha Gudekote, Balachandra Hadimani, Sangeeta Kalal, Shivaleela","doi":"10.37934/cfdl.16.11.3759","DOIUrl":null,"url":null,"abstract":"This computational study elucidates electromagnetic field effects on peristaltic transport of nanofluids in microfluidic channels using CFD modeling. The feasibility of electroosmotic micropumping for biomedical applications has garnered interest. However, the unique properties and motion of nanofluids warrant investigation. This work examines the impact on peristaltic heat and mass transfer in a non-uniform microchannel geometry incorporating electroosmosis. By explicitly accounting for electroosmotic factors, the coupled PDE system is solved to obtain concentration, temperature and velocity fields. While the electromagnetic simulations prove essential, a key focus lies on electroosmosis phenomena. Effects on parameters including skin friction, Nusselt and Sherwood numbers are analyzed for Casson and Newtonian nanofluids. Visual probing of trapping events further reveals the role of electroosmosis. Overall, this computational approach provides insights into the multifaceted interplay between peristalsis, nanofluids and electroosmotic flows under electromagnetic forces in microfluidic configurations. The perspectives gained at intersection of CFD, biomedical and nanotechnology domains can facilitate optimized designs of electroosmosis-driven biomedical microdevices.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Elucidation of Electromagnetic Effects on Peristaltic Nanofluid Transport in Microfluidics: Intersections of CFD, Biomedical and Nanotechnology Research\",\"authors\":\"Hanumesh Vaidya, Rajashekhar Choudhari, Fateh Mebarek-Oudina, Kerehalli Vinayaka Prasad, Manjunatha Gudekote, Balachandra Hadimani, Sangeeta Kalal, Shivaleela\",\"doi\":\"10.37934/cfdl.16.11.3759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This computational study elucidates electromagnetic field effects on peristaltic transport of nanofluids in microfluidic channels using CFD modeling. The feasibility of electroosmotic micropumping for biomedical applications has garnered interest. However, the unique properties and motion of nanofluids warrant investigation. This work examines the impact on peristaltic heat and mass transfer in a non-uniform microchannel geometry incorporating electroosmosis. By explicitly accounting for electroosmotic factors, the coupled PDE system is solved to obtain concentration, temperature and velocity fields. While the electromagnetic simulations prove essential, a key focus lies on electroosmosis phenomena. Effects on parameters including skin friction, Nusselt and Sherwood numbers are analyzed for Casson and Newtonian nanofluids. Visual probing of trapping events further reveals the role of electroosmosis. Overall, this computational approach provides insights into the multifaceted interplay between peristalsis, nanofluids and electroosmotic flows under electromagnetic forces in microfluidic configurations. The perspectives gained at intersection of CFD, biomedical and nanotechnology domains can facilitate optimized designs of electroosmosis-driven biomedical microdevices.\",\"PeriodicalId\":9736,\"journal\":{\"name\":\"CFD Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CFD Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/cfdl.16.11.3759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.11.3759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

这项计算研究利用 CFD 模型阐明了电磁场对微流体通道中纳米流体蠕动传输的影响。电渗微泵在生物医学应用中的可行性已引起人们的兴趣。然而,纳米流体的独特性质和运动值得研究。这项研究探讨了电渗透对非均匀微通道几何形状中蠕动传热和传质的影响。通过明确考虑电渗因素,对耦合 PDE 系统进行求解,以获得浓度、温度和速度场。电磁模拟证明是必不可少的,但重点在于电渗现象。分析了卡松和牛顿纳米流体对包括皮肤摩擦、努塞尔特数和舍伍德数在内的参数的影响。对捕集事件的视觉探测进一步揭示了电渗的作用。总之,这种计算方法有助于深入了解微流体配置中电磁力作用下的蠕动、纳米流体和电渗流之间的多方面相互作用。在 CFD、生物医学和纳米技术领域的交叉点上获得的观点有助于电渗驱动的生物医学微器件的优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Elucidation of Electromagnetic Effects on Peristaltic Nanofluid Transport in Microfluidics: Intersections of CFD, Biomedical and Nanotechnology Research
This computational study elucidates electromagnetic field effects on peristaltic transport of nanofluids in microfluidic channels using CFD modeling. The feasibility of electroosmotic micropumping for biomedical applications has garnered interest. However, the unique properties and motion of nanofluids warrant investigation. This work examines the impact on peristaltic heat and mass transfer in a non-uniform microchannel geometry incorporating electroosmosis. By explicitly accounting for electroosmotic factors, the coupled PDE system is solved to obtain concentration, temperature and velocity fields. While the electromagnetic simulations prove essential, a key focus lies on electroosmosis phenomena. Effects on parameters including skin friction, Nusselt and Sherwood numbers are analyzed for Casson and Newtonian nanofluids. Visual probing of trapping events further reveals the role of electroosmosis. Overall, this computational approach provides insights into the multifaceted interplay between peristalsis, nanofluids and electroosmotic flows under electromagnetic forces in microfluidic configurations. The perspectives gained at intersection of CFD, biomedical and nanotechnology domains can facilitate optimized designs of electroosmosis-driven biomedical microdevices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CFD Letters
CFD Letters Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
3.40
自引率
0.00%
发文量
76
期刊最新文献
Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe MHD Stagnation Point Flow of Micropolar Fluid over a Stretching/ Shrinking Sheet Unsteady MHD Walter’s-B Viscoelastic Flow Past a Vertical Porous Plate Effects of Activation Energy and Diffusion Thermo an Unsteady MHD Maxwell Fluid Flow over a Porous Vertical Stretched Sheet in the Presence of Thermophoresis and Brownian Motion Effect of Inlet Pressure on the Polyurethane Spray Nozzle for Soil Cracking Improvement: Simulations using CFD Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1