{"title":"具有不连续系数和点源的奇异扰动问题缺陷校正方法的后验误差分析","authors":"Aditya Kaushik, Shivani Jain","doi":"10.1115/1.4065900","DOIUrl":null,"url":null,"abstract":"\n The paper presents a defect correction method to solve singularly perturbed problems with discontinuous coefficient and point source. The method combines an inexpensive, lower-order stable, upwind difference scheme and a higher-order, less stable central difference scheme over a layer-adapted mesh. The mesh is designed so that most mesh points remain in the regions with rapid transitions. A posteriori error analysis is presented. The proposed numerical method is analysed for consistency, stability and convergence. The error estimates of the proposed numerical method satisfy parameter-uniform second-order convergence on the layer-adapted grid. The convergence obtained is optimal because it is free from any logarithmic term. The numerical analysis confirms the theoretical error analysis.","PeriodicalId":506262,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Posteriori Error Analysis of Defect Correction Method for Singular Perturbation Problems with Discontinuous Coefficient and Point Source\",\"authors\":\"Aditya Kaushik, Shivani Jain\",\"doi\":\"10.1115/1.4065900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The paper presents a defect correction method to solve singularly perturbed problems with discontinuous coefficient and point source. The method combines an inexpensive, lower-order stable, upwind difference scheme and a higher-order, less stable central difference scheme over a layer-adapted mesh. The mesh is designed so that most mesh points remain in the regions with rapid transitions. A posteriori error analysis is presented. The proposed numerical method is analysed for consistency, stability and convergence. The error estimates of the proposed numerical method satisfy parameter-uniform second-order convergence on the layer-adapted grid. The convergence obtained is optimal because it is free from any logarithmic term. The numerical analysis confirms the theoretical error analysis.\",\"PeriodicalId\":506262,\"journal\":{\"name\":\"Journal of Computational and Nonlinear Dynamics\",\"volume\":\" 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Nonlinear Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Posteriori Error Analysis of Defect Correction Method for Singular Perturbation Problems with Discontinuous Coefficient and Point Source
The paper presents a defect correction method to solve singularly perturbed problems with discontinuous coefficient and point source. The method combines an inexpensive, lower-order stable, upwind difference scheme and a higher-order, less stable central difference scheme over a layer-adapted mesh. The mesh is designed so that most mesh points remain in the regions with rapid transitions. A posteriori error analysis is presented. The proposed numerical method is analysed for consistency, stability and convergence. The error estimates of the proposed numerical method satisfy parameter-uniform second-order convergence on the layer-adapted grid. The convergence obtained is optimal because it is free from any logarithmic term. The numerical analysis confirms the theoretical error analysis.