还原条件下硼在 CaO-SiO2、MgO-SiO2、CaO-MgO-SiO2 和 CaO-Al2O3-SiO2 体系的硅和炉渣之间的分布研究

A. A. Ilin, I. A. Pikalova, N. N. Zobnin
{"title":"还原条件下硼在 CaO-SiO2、MgO-SiO2、CaO-MgO-SiO2 和 CaO-Al2O3-SiO2 体系的硅和炉渣之间的分布研究","authors":"A. A. Ilin, I. A. Pikalova, N. N. Zobnin","doi":"10.21285/1814-3520-2024-2-371-385","DOIUrl":null,"url":null,"abstract":"We study the distribution of boron between silicon and slag of the CaO-SiO2, MgO-SiO2, CaO-MgO-SiO2, and CaO-Al2O3-SiO2 systems under reducing conditions with the purpose of determining the feasibility of using boroncontaining materials to eliminate slagging in the melting zone during industrial silicon smelting in ore smelting furnaces. To that end, we used model slags obtained by melting chemically pure oxides, as well as silicon-based alloys with an admixture of boron. High-purity 5N silicon produced by Kazakhstan Solar Silicon LLP was used. Boron alloys were manufactured independently by melting silicon with boron. The experiments included holding liquid slag and alloys in graphite crucibles at a temperature of 1600°C under poorly reducing conditions. The boron content in slag and silicon samples was analyzed by inductively coupled plasma mass spectrometry. The boron distribution coefficient in the above systems was established to range from 2 to 2.5 for the entire melt area of these systems at 1600°C. The boron distribution coefficient was demonstrated to decrease under an increase in the content of Al2O3 in the CaO-Al2O3-SiO2 triplet system, which agrees with the data obtained by other authors. The use of graphite crucibles in experiments creates reducing conditions, similar to those in the hearth of an ore smelting furnace. Therefore, this approach provides more adequate data in predicting the equilibrium boron content in silicon in comparison with the experiments conducted using alumina crucibles by other authors. It was also found that the boron distribution coefficient does not depend on the magnesium oxide content in double (MgO-SiO2) and triplet (CaO-MgO-SiO2) systems. In conclusion, our results lift restrictions on the content of boron in boron-containing fluxes during industrial silicon smelting.","PeriodicalId":488940,"journal":{"name":"iPolytech Journal","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of boron distribution between silicon and slags of CaO-SiO2, MgO-SiO2, CaO-MgO-SiO2, and CaO-Al2O3-SiO2 systems under reducing conditions\",\"authors\":\"A. A. Ilin, I. A. Pikalova, N. N. Zobnin\",\"doi\":\"10.21285/1814-3520-2024-2-371-385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the distribution of boron between silicon and slag of the CaO-SiO2, MgO-SiO2, CaO-MgO-SiO2, and CaO-Al2O3-SiO2 systems under reducing conditions with the purpose of determining the feasibility of using boroncontaining materials to eliminate slagging in the melting zone during industrial silicon smelting in ore smelting furnaces. To that end, we used model slags obtained by melting chemically pure oxides, as well as silicon-based alloys with an admixture of boron. High-purity 5N silicon produced by Kazakhstan Solar Silicon LLP was used. Boron alloys were manufactured independently by melting silicon with boron. The experiments included holding liquid slag and alloys in graphite crucibles at a temperature of 1600°C under poorly reducing conditions. The boron content in slag and silicon samples was analyzed by inductively coupled plasma mass spectrometry. The boron distribution coefficient in the above systems was established to range from 2 to 2.5 for the entire melt area of these systems at 1600°C. The boron distribution coefficient was demonstrated to decrease under an increase in the content of Al2O3 in the CaO-Al2O3-SiO2 triplet system, which agrees with the data obtained by other authors. The use of graphite crucibles in experiments creates reducing conditions, similar to those in the hearth of an ore smelting furnace. Therefore, this approach provides more adequate data in predicting the equilibrium boron content in silicon in comparison with the experiments conducted using alumina crucibles by other authors. It was also found that the boron distribution coefficient does not depend on the magnesium oxide content in double (MgO-SiO2) and triplet (CaO-MgO-SiO2) systems. In conclusion, our results lift restrictions on the content of boron in boron-containing fluxes during industrial silicon smelting.\",\"PeriodicalId\":488940,\"journal\":{\"name\":\"iPolytech Journal\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iPolytech Journal\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.21285/1814-3520-2024-2-371-385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iPolytech Journal","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.21285/1814-3520-2024-2-371-385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了还原条件下 CaO-SiO2、MgO-SiO2、CaO-MgO-SiO2 和 CaO-Al2O3-SiO2 体系的硅和熔渣之间的硼分布情况,目的是确定在矿石熔炼炉中进行工业硅熔炼时使用含硼材料消除熔炼区熔渣的可行性。为此,我们使用了通过熔化化学纯氧化物以及掺入硼的硅基合金而获得的模型熔渣。我们使用了哈萨克斯坦太阳能硅有限责任公司生产的高纯度 5N 硅。硼合金是通过熔化硅和硼而独立生产的。实验包括在还原性较差的条件下,将液态熔渣和合金置于温度为 1600°C 的石墨坩埚中。熔渣和硅样品中的硼含量通过电感耦合等离子体质谱法进行分析。在 1600°C 的温度下,上述体系的整个熔体区域的硼分布系数范围为 2 至 2.5。在 CaO-Al2O3-SiO2 三重体系中,随着 Al2O3 含量的增加,硼分布系数会降低,这与其他作者获得的数据一致。在实验中使用石墨坩埚会产生还原条件,类似于矿石熔炼炉的炉膛。因此,与其他作者使用氧化铝坩埚进行的实验相比,这种方法在预测硅中的平衡硼含量方面提供了更充分的数据。研究还发现,硼分布系数并不取决于双(MgO-SiO2)和三(CaO-MgO-SiO2)体系中的氧化镁含量。总之,我们的研究结果解除了对工业硅冶炼过程中含硼助熔剂中硼含量的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of boron distribution between silicon and slags of CaO-SiO2, MgO-SiO2, CaO-MgO-SiO2, and CaO-Al2O3-SiO2 systems under reducing conditions
We study the distribution of boron between silicon and slag of the CaO-SiO2, MgO-SiO2, CaO-MgO-SiO2, and CaO-Al2O3-SiO2 systems under reducing conditions with the purpose of determining the feasibility of using boroncontaining materials to eliminate slagging in the melting zone during industrial silicon smelting in ore smelting furnaces. To that end, we used model slags obtained by melting chemically pure oxides, as well as silicon-based alloys with an admixture of boron. High-purity 5N silicon produced by Kazakhstan Solar Silicon LLP was used. Boron alloys were manufactured independently by melting silicon with boron. The experiments included holding liquid slag and alloys in graphite crucibles at a temperature of 1600°C under poorly reducing conditions. The boron content in slag and silicon samples was analyzed by inductively coupled plasma mass spectrometry. The boron distribution coefficient in the above systems was established to range from 2 to 2.5 for the entire melt area of these systems at 1600°C. The boron distribution coefficient was demonstrated to decrease under an increase in the content of Al2O3 in the CaO-Al2O3-SiO2 triplet system, which agrees with the data obtained by other authors. The use of graphite crucibles in experiments creates reducing conditions, similar to those in the hearth of an ore smelting furnace. Therefore, this approach provides more adequate data in predicting the equilibrium boron content in silicon in comparison with the experiments conducted using alumina crucibles by other authors. It was also found that the boron distribution coefficient does not depend on the magnesium oxide content in double (MgO-SiO2) and triplet (CaO-MgO-SiO2) systems. In conclusion, our results lift restrictions on the content of boron in boron-containing fluxes during industrial silicon smelting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling of traction power supply systems with nonlinear stationary loads Study of boron distribution between silicon and slags of CaO-SiO2, MgO-SiO2, CaO-MgO-SiO2, and CaO-Al2O3-SiO2 systems under reducing conditions Simulating residual stresses formed in the technological sequence of shot-impact treatment–flap-wheel trimming Analysis of approaches to integrating microgrids into energy communities A few aspects of controlling the photopolymerisation process in additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1