Yue Fan, Wei Feng, Zhenxing Ren, Bingqi Liu, Dazhi Wang
{"title":"通过蒙特卡洛和最小二乘法综合方法修改航空摄像机的热网参数","authors":"Yue Fan, Wei Feng, Zhenxing Ren, Bingqi Liu, Dazhi Wang","doi":"10.3390/photonics11070641","DOIUrl":null,"url":null,"abstract":"The precise thermal control of aerial cameras is crucial for the acquisition of high-resolution imagery, and an accurate temperature prediction is essential to achieve this. This paper presents a methodology for modifying thermal network models to improve the accuracy of temperature prediction for aerial cameras. Seven types of thermal parameters are extracted from the thermal network model, and a thermally sensitive analysis identifies eleven key parameters to streamline the processing time. Departing from traditional methods that rely on steady-state data, this study conducts transient thermal tests and leverages polynomial fitting to facilitate thorough parameter modification. To ensure data reliability, the Monte-Carlo algorithm is employed to explore the parameter spaces of key parameters, analyzing temperature errors. Subsequently, the Least-Squares method is utilized to obtain optimal estimates of the key parameter values. As a result, the updated model demonstrates significantly improved accuracy in temperature predictions, achieving a reduction in the maximum absolute error between the predicted and experimental results from 22 °C to 4 °C, and a lowering of the relative error from 33.8% to 6.1%. The proposed modification method validates its effectiveness in modeling and enhancing the precision of thermal network models for aerial cameras.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of Thermal Network Parameters for Aerial Cameras via Integrated Monte-Carlo and Least-Squares Methods\",\"authors\":\"Yue Fan, Wei Feng, Zhenxing Ren, Bingqi Liu, Dazhi Wang\",\"doi\":\"10.3390/photonics11070641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise thermal control of aerial cameras is crucial for the acquisition of high-resolution imagery, and an accurate temperature prediction is essential to achieve this. This paper presents a methodology for modifying thermal network models to improve the accuracy of temperature prediction for aerial cameras. Seven types of thermal parameters are extracted from the thermal network model, and a thermally sensitive analysis identifies eleven key parameters to streamline the processing time. Departing from traditional methods that rely on steady-state data, this study conducts transient thermal tests and leverages polynomial fitting to facilitate thorough parameter modification. To ensure data reliability, the Monte-Carlo algorithm is employed to explore the parameter spaces of key parameters, analyzing temperature errors. Subsequently, the Least-Squares method is utilized to obtain optimal estimates of the key parameter values. As a result, the updated model demonstrates significantly improved accuracy in temperature predictions, achieving a reduction in the maximum absolute error between the predicted and experimental results from 22 °C to 4 °C, and a lowering of the relative error from 33.8% to 6.1%. The proposed modification method validates its effectiveness in modeling and enhancing the precision of thermal network models for aerial cameras.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11070641\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11070641","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Modification of Thermal Network Parameters for Aerial Cameras via Integrated Monte-Carlo and Least-Squares Methods
The precise thermal control of aerial cameras is crucial for the acquisition of high-resolution imagery, and an accurate temperature prediction is essential to achieve this. This paper presents a methodology for modifying thermal network models to improve the accuracy of temperature prediction for aerial cameras. Seven types of thermal parameters are extracted from the thermal network model, and a thermally sensitive analysis identifies eleven key parameters to streamline the processing time. Departing from traditional methods that rely on steady-state data, this study conducts transient thermal tests and leverages polynomial fitting to facilitate thorough parameter modification. To ensure data reliability, the Monte-Carlo algorithm is employed to explore the parameter spaces of key parameters, analyzing temperature errors. Subsequently, the Least-Squares method is utilized to obtain optimal estimates of the key parameter values. As a result, the updated model demonstrates significantly improved accuracy in temperature predictions, achieving a reduction in the maximum absolute error between the predicted and experimental results from 22 °C to 4 °C, and a lowering of the relative error from 33.8% to 6.1%. The proposed modification method validates its effectiveness in modeling and enhancing the precision of thermal network models for aerial cameras.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.