{"title":"用于合成氨的纳秒脉冲滑弧等离子体:从放电模式和电子温度更好地洞察","authors":"Xiaofang Xu, Meng Sun, Qinlong Song, Guangyi Liu, Haibao Zhang","doi":"10.1088/1361-6463/ad5f3d","DOIUrl":null,"url":null,"abstract":"\n Low-temperature plasma technology is a promising technological route to achieve green and efficient ammonia synthesis at ambient temperature and pressure. In this work, a Laval nozzle type gliding arc plasma reactor was designed for the direct synthesis of ammonia from N2 and H2 discharges ignited by a high voltage nanosecond pulsed power supply to investigate the effect of different electrode gaps, pulse voltages, and VN2:VH2 on ammonia synthesis. The nanosecond pulsed plasma discharges were characterized through oscilloscope and optical emission spectroscopy (OES). The maximum rate of NH3 synthesis was 538.12 μmol•h-1 at 1.5 mm electrode gap, 16 kV peak pulse voltage, 6 kHz pulse repetition frequency, 100 ns pulse width, 100 ns pulse rising edge, 100 ns pulse falling edge, and 200 mL min-1 total gas flow rate with VN2:VH2=1:1. It was demonstrated that the discharge mode of the nanosecond pulsed gliding arc plasma can transit from a unipolar state to a bipolar state determined by the duty cycle accompanied with higher discharge power and vibrational temperature. Bipolar discharge mode is beneficial to improve the efficiency of plasma ammonia synthesis because of it can strengthen the plasma discharge and increase the vibrational temperature. The ammonia synthesis rate and N2 conversion rate increased with the increase of the discharge power and electron vibrational temperature.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanosecond pulsed gliding arc plasma for ammonia synthesis: Better insight from discharge mode and electron temperature\",\"authors\":\"Xiaofang Xu, Meng Sun, Qinlong Song, Guangyi Liu, Haibao Zhang\",\"doi\":\"10.1088/1361-6463/ad5f3d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Low-temperature plasma technology is a promising technological route to achieve green and efficient ammonia synthesis at ambient temperature and pressure. In this work, a Laval nozzle type gliding arc plasma reactor was designed for the direct synthesis of ammonia from N2 and H2 discharges ignited by a high voltage nanosecond pulsed power supply to investigate the effect of different electrode gaps, pulse voltages, and VN2:VH2 on ammonia synthesis. The nanosecond pulsed plasma discharges were characterized through oscilloscope and optical emission spectroscopy (OES). The maximum rate of NH3 synthesis was 538.12 μmol•h-1 at 1.5 mm electrode gap, 16 kV peak pulse voltage, 6 kHz pulse repetition frequency, 100 ns pulse width, 100 ns pulse rising edge, 100 ns pulse falling edge, and 200 mL min-1 total gas flow rate with VN2:VH2=1:1. It was demonstrated that the discharge mode of the nanosecond pulsed gliding arc plasma can transit from a unipolar state to a bipolar state determined by the duty cycle accompanied with higher discharge power and vibrational temperature. Bipolar discharge mode is beneficial to improve the efficiency of plasma ammonia synthesis because of it can strengthen the plasma discharge and increase the vibrational temperature. The ammonia synthesis rate and N2 conversion rate increased with the increase of the discharge power and electron vibrational temperature.\",\"PeriodicalId\":507822,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\" 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad5f3d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad5f3d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanosecond pulsed gliding arc plasma for ammonia synthesis: Better insight from discharge mode and electron temperature
Low-temperature plasma technology is a promising technological route to achieve green and efficient ammonia synthesis at ambient temperature and pressure. In this work, a Laval nozzle type gliding arc plasma reactor was designed for the direct synthesis of ammonia from N2 and H2 discharges ignited by a high voltage nanosecond pulsed power supply to investigate the effect of different electrode gaps, pulse voltages, and VN2:VH2 on ammonia synthesis. The nanosecond pulsed plasma discharges were characterized through oscilloscope and optical emission spectroscopy (OES). The maximum rate of NH3 synthesis was 538.12 μmol•h-1 at 1.5 mm electrode gap, 16 kV peak pulse voltage, 6 kHz pulse repetition frequency, 100 ns pulse width, 100 ns pulse rising edge, 100 ns pulse falling edge, and 200 mL min-1 total gas flow rate with VN2:VH2=1:1. It was demonstrated that the discharge mode of the nanosecond pulsed gliding arc plasma can transit from a unipolar state to a bipolar state determined by the duty cycle accompanied with higher discharge power and vibrational temperature. Bipolar discharge mode is beneficial to improve the efficiency of plasma ammonia synthesis because of it can strengthen the plasma discharge and increase the vibrational temperature. The ammonia synthesis rate and N2 conversion rate increased with the increase of the discharge power and electron vibrational temperature.