使用精简卷积神经网络 (LCNN) 检测金属表面缺陷并进行分类

Al-Mahmud Al Mamun, Md Rasel Hossain, Mst Mahfuza Sharmin
{"title":"使用精简卷积神经网络 (LCNN) 检测金属表面缺陷并进行分类","authors":"Al-Mahmud Al Mamun, Md Rasel Hossain, Mst Mahfuza Sharmin","doi":"10.15406/mseij.2024.08.00239","DOIUrl":null,"url":null,"abstract":"Quality control in metal product manufacturing relies heavily on accurately detecting and classifying surface defects through visual inspection. Recently, convolutional neural networks (CNNs) have shown promising results in automating this process with high accuracy. This research paper proposes a new (experimental version) Lite Convolutional Neural Network (LCNN) designed to analyze image data to detect and classify surface defects on metallic surfaces. Our model was trained on a metal surface defects dataset comprising 1800 images of six different types of surface defects. Despite using relatively small datasets, the proposed LCNN version achieves a classification accuracy of 91.67%, highlighting its effectiveness in real-world defect detection scenarios.","PeriodicalId":435904,"journal":{"name":"Material Science & Engineering International Journal","volume":"118 s1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and classification of metal surface defects using lite convolutional neural network (LCNN)\",\"authors\":\"Al-Mahmud Al Mamun, Md Rasel Hossain, Mst Mahfuza Sharmin\",\"doi\":\"10.15406/mseij.2024.08.00239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quality control in metal product manufacturing relies heavily on accurately detecting and classifying surface defects through visual inspection. Recently, convolutional neural networks (CNNs) have shown promising results in automating this process with high accuracy. This research paper proposes a new (experimental version) Lite Convolutional Neural Network (LCNN) designed to analyze image data to detect and classify surface defects on metallic surfaces. Our model was trained on a metal surface defects dataset comprising 1800 images of six different types of surface defects. Despite using relatively small datasets, the proposed LCNN version achieves a classification accuracy of 91.67%, highlighting its effectiveness in real-world defect detection scenarios.\",\"PeriodicalId\":435904,\"journal\":{\"name\":\"Material Science & Engineering International Journal\",\"volume\":\"118 s1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science & Engineering International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/mseij.2024.08.00239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science & Engineering International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/mseij.2024.08.00239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属产品制造过程中的质量控制在很大程度上依赖于通过视觉检测对表面缺陷进行准确检测和分类。最近,卷积神经网络(CNN)在高精度自动化这一过程中取得了可喜的成果。本研究论文提出了一种新的(实验版)精简卷积神经网络(LCNN),旨在分析图像数据,以检测和分类金属表面的表面缺陷。我们的模型在金属表面缺陷数据集上进行了训练,该数据集由 1800 张六种不同类型的表面缺陷图像组成。尽管使用了相对较小的数据集,但所提出的 LCNN 版本的分类准确率达到了 91.67%,突出了其在实际缺陷检测场景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and classification of metal surface defects using lite convolutional neural network (LCNN)
Quality control in metal product manufacturing relies heavily on accurately detecting and classifying surface defects through visual inspection. Recently, convolutional neural networks (CNNs) have shown promising results in automating this process with high accuracy. This research paper proposes a new (experimental version) Lite Convolutional Neural Network (LCNN) designed to analyze image data to detect and classify surface defects on metallic surfaces. Our model was trained on a metal surface defects dataset comprising 1800 images of six different types of surface defects. Despite using relatively small datasets, the proposed LCNN version achieves a classification accuracy of 91.67%, highlighting its effectiveness in real-world defect detection scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection and classification of metal surface defects using lite convolutional neural network (LCNN) Near-earth asteroids classification using NGBoost classifier Comparison of test methods for crevice corrosion propagation and repassivation potential of stainless steel AISI 316 Development of a credit risk evaluation system using multilayer neural networks Principles, properties and preparation of thermochromic materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1