使用 Cu-4.0Sn-9.9Ni-7.8P 填充箔钎焊泡沫铜:钎焊温度和泡沫铜孔隙密度的影响

Nur Amirah Mohd Zahri, Yukio Miyashita, Tadashi Ariga, A. S. Md. Abdul Haseeb, N. L. Sukiman
{"title":"使用 Cu-4.0Sn-9.9Ni-7.8P 填充箔钎焊泡沫铜:钎焊温度和泡沫铜孔隙密度的影响","authors":"Nur Amirah Mohd Zahri, Yukio Miyashita, Tadashi Ariga, A. S. Md. Abdul Haseeb, N. L. Sukiman","doi":"10.4028/p-tB1ZF5","DOIUrl":null,"url":null,"abstract":"Copper (Cu) foam is a promising material that owns a high surface area that can be utilized in a thermal application. In this research, the brazing of Cu substrate to Cu foam in the sandwich configuration using Cu alloy filler foil was carried out. The foam at different pore per inch (PPI) of 15, 25 and 50 are brazed at different brazing temperatures. Mechanical and microstructure analysis were conducted to investigate a suitable brazing temperature and the best pore density of foam. The compressive strength of brazed 50 PPI foam has yielded the highest due to the highly dense interconnected branches. While the highest shear strength of brazed interface using 15 PPI foam has been recorded. The large branch size of 15 PPI foam has contributed to the sound joint between the brazed joint interface of Cu substrate and foam. Both mechanicals analysis above exhibits a highest strength at 660 °C as a brazing temperature The shear stress-strain curve of Cu substrate and foam brazed joint interface shows a brittle behaviour which accordance with the discoverable brittle phases of Cu3P and Ni3P using X-ray diffraction (XRD). Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) have presented the formation of Cu3P and Ni3P at the brazed joint interface of Cu substrate and foam.","PeriodicalId":17714,"journal":{"name":"Key Engineering Materials","volume":"50 s176","pages":"67 - 76"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brazing of Copper Foam Using Cu-4.0Sn-9.9Ni-7.8P Filler Foil: Effect of Brazing Temperature and Copper Foam Pore Density\",\"authors\":\"Nur Amirah Mohd Zahri, Yukio Miyashita, Tadashi Ariga, A. S. Md. Abdul Haseeb, N. L. Sukiman\",\"doi\":\"10.4028/p-tB1ZF5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper (Cu) foam is a promising material that owns a high surface area that can be utilized in a thermal application. In this research, the brazing of Cu substrate to Cu foam in the sandwich configuration using Cu alloy filler foil was carried out. The foam at different pore per inch (PPI) of 15, 25 and 50 are brazed at different brazing temperatures. Mechanical and microstructure analysis were conducted to investigate a suitable brazing temperature and the best pore density of foam. The compressive strength of brazed 50 PPI foam has yielded the highest due to the highly dense interconnected branches. While the highest shear strength of brazed interface using 15 PPI foam has been recorded. The large branch size of 15 PPI foam has contributed to the sound joint between the brazed joint interface of Cu substrate and foam. Both mechanicals analysis above exhibits a highest strength at 660 °C as a brazing temperature The shear stress-strain curve of Cu substrate and foam brazed joint interface shows a brittle behaviour which accordance with the discoverable brittle phases of Cu3P and Ni3P using X-ray diffraction (XRD). Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) have presented the formation of Cu3P and Ni3P at the brazed joint interface of Cu substrate and foam.\",\"PeriodicalId\":17714,\"journal\":{\"name\":\"Key Engineering Materials\",\"volume\":\"50 s176\",\"pages\":\"67 - 76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Key Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-tB1ZF5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-tB1ZF5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

泡沫铜(Cu)是一种很有前途的材料,它具有很高的表面积,可用于热应用领域。在这项研究中,使用铜合金填充箔对夹层结构中的铜基板和铜泡沫进行了钎焊。在不同的钎焊温度下,对每英寸孔隙数(PPI)为 15、25 和 50 的泡沫进行了钎焊。为研究合适的钎焊温度和泡沫的最佳孔隙密度,进行了机械和微观结构分析。钎焊 50 PPI 泡沫的抗压强度最高,这是因为其相互连接的分支高度致密。而 15 PPI 泡沫钎焊界面的剪切强度最高。15 PPI 泡沫的大分支尺寸有助于铜基材和泡沫的钎焊界面之间的良好连接。铜基板和泡沫钎焊接合界面的剪切应力-应变曲线显示出脆性行为,这与使用 X 射线衍射 (XRD) 发现的 Cu3P 和 Ni3P 脆性相相符。扫描电子显微镜(SEM)和能量色散 X 射线光谱(EDX)显示,在铜基板和泡沫的钎焊接合界面上形成了 Cu3P 和 Ni3P。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brazing of Copper Foam Using Cu-4.0Sn-9.9Ni-7.8P Filler Foil: Effect of Brazing Temperature and Copper Foam Pore Density
Copper (Cu) foam is a promising material that owns a high surface area that can be utilized in a thermal application. In this research, the brazing of Cu substrate to Cu foam in the sandwich configuration using Cu alloy filler foil was carried out. The foam at different pore per inch (PPI) of 15, 25 and 50 are brazed at different brazing temperatures. Mechanical and microstructure analysis were conducted to investigate a suitable brazing temperature and the best pore density of foam. The compressive strength of brazed 50 PPI foam has yielded the highest due to the highly dense interconnected branches. While the highest shear strength of brazed interface using 15 PPI foam has been recorded. The large branch size of 15 PPI foam has contributed to the sound joint between the brazed joint interface of Cu substrate and foam. Both mechanicals analysis above exhibits a highest strength at 660 °C as a brazing temperature The shear stress-strain curve of Cu substrate and foam brazed joint interface shows a brittle behaviour which accordance with the discoverable brittle phases of Cu3P and Ni3P using X-ray diffraction (XRD). Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) have presented the formation of Cu3P and Ni3P at the brazed joint interface of Cu substrate and foam.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Nanomaterials as Next-Gen Corrosion Inhibitors: A Comprehensive Review for Ceramic Wastewater Treatment Green Composite Concrete Incorporating with Non-Biodegradable Wastes Incorporation of Silicone Mold Residues Influence on Acoustic Properties of Subfloor Mortars Development of Hygrothermal Reference Year for Hygrothermal Simulation of Hygroscopic Building Construction for Guangzhou Experimental Study on Fracture Properties of Self-Compacting Concrete Containing Red Mud Waste and Different Steel Fiber Types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1