B. Khussain, Alexandr Sass, Alexandr Brodskiy, Kenzhegul Rakhmetova, Ivan Torlopov, Magira Zhylkybek, T. Baizhumanova, S. Tungatarova, A. Khussain, Murat Zhurinov, A.ZH. Kenessary, Ranida Tyulebayeva, Alexandr Logvinenko, Yernar Narimanov
{"title":"不同成分的二元钴-氧化镁燃烧催化剂的形成模式","authors":"B. Khussain, Alexandr Sass, Alexandr Brodskiy, Kenzhegul Rakhmetova, Ivan Torlopov, Magira Zhylkybek, T. Baizhumanova, S. Tungatarova, A. Khussain, Murat Zhurinov, A.ZH. Kenessary, Ranida Tyulebayeva, Alexandr Logvinenko, Yernar Narimanov","doi":"10.3390/catal14070425","DOIUrl":null,"url":null,"abstract":"In order to establish the formation patterns of the Co–Mg oxide system, samples with different Co:Mg ratios and heat treatment temperatures were synthesized and studied. A study of the samples confirmed the phase transition of MgxCo2–xO4 spinels into the corresponding solid solutions at 800–900 °C. The similarity of the formation patterns for different compositions is shown. The rocksalt oxide in low-temperature samples is an anion-modified paracrystalline phase that forms a “true” solid solution only upon spinel decomposition. The TPR profiles of the decomposed Co3O4 spinel show surface Co3O4 peaks and a wide peak corresponding to the well-crystallized CoO, while partial Co3O4 TPR up to 380 °C results in dispersed and amorphous CoO. The high-temperature non-stoichiometric samples are poorly reduced, indicating their low oxygen reactivity. Spinel reoxidation after heat treatment to 1100 °C by calcination at 750 °C showed complete regeneration for MgCo2O4–Co3O4 samples and its absence in case of an excess of MgO relative to stoichiometry.","PeriodicalId":505577,"journal":{"name":"Catalysts","volume":"42 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns of Formation of Binary Cobalt–Magnesium Oxide Combustion Catalysts of Various Composition\",\"authors\":\"B. Khussain, Alexandr Sass, Alexandr Brodskiy, Kenzhegul Rakhmetova, Ivan Torlopov, Magira Zhylkybek, T. Baizhumanova, S. Tungatarova, A. Khussain, Murat Zhurinov, A.ZH. Kenessary, Ranida Tyulebayeva, Alexandr Logvinenko, Yernar Narimanov\",\"doi\":\"10.3390/catal14070425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to establish the formation patterns of the Co–Mg oxide system, samples with different Co:Mg ratios and heat treatment temperatures were synthesized and studied. A study of the samples confirmed the phase transition of MgxCo2–xO4 spinels into the corresponding solid solutions at 800–900 °C. The similarity of the formation patterns for different compositions is shown. The rocksalt oxide in low-temperature samples is an anion-modified paracrystalline phase that forms a “true” solid solution only upon spinel decomposition. The TPR profiles of the decomposed Co3O4 spinel show surface Co3O4 peaks and a wide peak corresponding to the well-crystallized CoO, while partial Co3O4 TPR up to 380 °C results in dispersed and amorphous CoO. The high-temperature non-stoichiometric samples are poorly reduced, indicating their low oxygen reactivity. Spinel reoxidation after heat treatment to 1100 °C by calcination at 750 °C showed complete regeneration for MgCo2O4–Co3O4 samples and its absence in case of an excess of MgO relative to stoichiometry.\",\"PeriodicalId\":505577,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"42 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14070425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/catal14070425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Patterns of Formation of Binary Cobalt–Magnesium Oxide Combustion Catalysts of Various Composition
In order to establish the formation patterns of the Co–Mg oxide system, samples with different Co:Mg ratios and heat treatment temperatures were synthesized and studied. A study of the samples confirmed the phase transition of MgxCo2–xO4 spinels into the corresponding solid solutions at 800–900 °C. The similarity of the formation patterns for different compositions is shown. The rocksalt oxide in low-temperature samples is an anion-modified paracrystalline phase that forms a “true” solid solution only upon spinel decomposition. The TPR profiles of the decomposed Co3O4 spinel show surface Co3O4 peaks and a wide peak corresponding to the well-crystallized CoO, while partial Co3O4 TPR up to 380 °C results in dispersed and amorphous CoO. The high-temperature non-stoichiometric samples are poorly reduced, indicating their low oxygen reactivity. Spinel reoxidation after heat treatment to 1100 °C by calcination at 750 °C showed complete regeneration for MgCo2O4–Co3O4 samples and its absence in case of an excess of MgO relative to stoichiometry.