Olusola Ifedolapo Watti, Masande Yalo, Rajan Sharma, Masixole Makhaba, Ahmed A. Hussein, W. Mabusela
{"title":"犀牛叶提取物及化学成分的植物化学、抗酪氨酸酶和抗糖尿病研究","authors":"Olusola Ifedolapo Watti, Masande Yalo, Rajan Sharma, Masixole Makhaba, Ahmed A. Hussein, W. Mabusela","doi":"10.3390/chemistry6040032","DOIUrl":null,"url":null,"abstract":"Dicerothamnus rhinocerotis (L.f.) Koekemoer, also known as rhinoceros bush and previously called Elytropappus rhinocerotis (L.f.) Less., is from the Asteraceae plant family. The plant is traditionally used to treat indigestion, stomach ulcers, influenza, and diarrhea. This study was aimed at investigating the phytochemistry, anti-glucosidase, anti-amylase, and anti-tyrosinase effects of D. rhinocerotis as research in this area is limited. The air-dried plant materials were macerated in 80% methanol (MeOH) and fractionated between hexane, dichloromethane (DCM), ethyl acetate (EtOAc), and butanol (BuOH). Column chromatography on silica gel was employed for the isolation of the compounds. A total of six compounds (1–6) were isolated from the fractions viz. acacetin (1), 15-hydroxy-cis-clerodan-3-ene-18-oic-acid (2), acacetin-7-glucoside (3), pinitol (4), apigenin (5), and β-sitosterol-3-O-glycoside (6). Compounds 2–4 and 6 are reported for the first time from this plant. Among the different fractions, the BuOH and EtOAc fractions had strong tyrosinase inhibitory activities with IC50 values of 13.7 ± 1.71 and 11.6 ± 2.68 µg/mL, respectively, while among the isolated compounds, apigenin (5) had the strongest inhibitory activity, with an IC50 of 14.58 µM, which competes favorably with Kojic acid (17.26 µM). The anti-glucosidase assay showed good activity in three of the fractions and compound 5, while the anti-amylase assays did not show significant inhibition activity.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"22 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytochemistry, Anti-Tyrosinase, and Anti-Diabetes Studies of Extracts and Chemical Constituents of Dicerothamnus rhinocerotis Leaves\",\"authors\":\"Olusola Ifedolapo Watti, Masande Yalo, Rajan Sharma, Masixole Makhaba, Ahmed A. Hussein, W. Mabusela\",\"doi\":\"10.3390/chemistry6040032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dicerothamnus rhinocerotis (L.f.) Koekemoer, also known as rhinoceros bush and previously called Elytropappus rhinocerotis (L.f.) Less., is from the Asteraceae plant family. The plant is traditionally used to treat indigestion, stomach ulcers, influenza, and diarrhea. This study was aimed at investigating the phytochemistry, anti-glucosidase, anti-amylase, and anti-tyrosinase effects of D. rhinocerotis as research in this area is limited. The air-dried plant materials were macerated in 80% methanol (MeOH) and fractionated between hexane, dichloromethane (DCM), ethyl acetate (EtOAc), and butanol (BuOH). Column chromatography on silica gel was employed for the isolation of the compounds. A total of six compounds (1–6) were isolated from the fractions viz. acacetin (1), 15-hydroxy-cis-clerodan-3-ene-18-oic-acid (2), acacetin-7-glucoside (3), pinitol (4), apigenin (5), and β-sitosterol-3-O-glycoside (6). Compounds 2–4 and 6 are reported for the first time from this plant. Among the different fractions, the BuOH and EtOAc fractions had strong tyrosinase inhibitory activities with IC50 values of 13.7 ± 1.71 and 11.6 ± 2.68 µg/mL, respectively, while among the isolated compounds, apigenin (5) had the strongest inhibitory activity, with an IC50 of 14.58 µM, which competes favorably with Kojic acid (17.26 µM). The anti-glucosidase assay showed good activity in three of the fractions and compound 5, while the anti-amylase assays did not show significant inhibition activity.\",\"PeriodicalId\":9850,\"journal\":{\"name\":\"Chemistry\",\"volume\":\"22 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/chemistry6040032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/chemistry6040032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Phytochemistry, Anti-Tyrosinase, and Anti-Diabetes Studies of Extracts and Chemical Constituents of Dicerothamnus rhinocerotis Leaves
Dicerothamnus rhinocerotis (L.f.) Koekemoer, also known as rhinoceros bush and previously called Elytropappus rhinocerotis (L.f.) Less., is from the Asteraceae plant family. The plant is traditionally used to treat indigestion, stomach ulcers, influenza, and diarrhea. This study was aimed at investigating the phytochemistry, anti-glucosidase, anti-amylase, and anti-tyrosinase effects of D. rhinocerotis as research in this area is limited. The air-dried plant materials were macerated in 80% methanol (MeOH) and fractionated between hexane, dichloromethane (DCM), ethyl acetate (EtOAc), and butanol (BuOH). Column chromatography on silica gel was employed for the isolation of the compounds. A total of six compounds (1–6) were isolated from the fractions viz. acacetin (1), 15-hydroxy-cis-clerodan-3-ene-18-oic-acid (2), acacetin-7-glucoside (3), pinitol (4), apigenin (5), and β-sitosterol-3-O-glycoside (6). Compounds 2–4 and 6 are reported for the first time from this plant. Among the different fractions, the BuOH and EtOAc fractions had strong tyrosinase inhibitory activities with IC50 values of 13.7 ± 1.71 and 11.6 ± 2.68 µg/mL, respectively, while among the isolated compounds, apigenin (5) had the strongest inhibitory activity, with an IC50 of 14.58 µM, which competes favorably with Kojic acid (17.26 µM). The anti-glucosidase assay showed good activity in three of the fractions and compound 5, while the anti-amylase assays did not show significant inhibition activity.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2017 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.