{"title":"利用神经网络提高迁移地震数据分辨率的技术","authors":"О.В. Носков","doi":"10.15407/dopovidi2024.03.011","DOIUrl":null,"url":null,"abstract":"Розроблено і програмно реалізовано математичну модель машинного навчання на базі нейронної мережі архітектури U-net для збільшення роздільної здатності та збільшення значення сигнал/завада для полів сейсмічної зйомки 2D і 3D досліджень із застосуванням синтетичного набору тренувальних даних. Описано будову моделі, наведено метрики якості тренування/валідації. Побудовано алгоритм для підготовки мігрованих сейсмічних даних у стандартному форматі SEGY для опрацювання за допомогою моделі і зворотною конвертацією у вхідний формат.","PeriodicalId":20898,"journal":{"name":"Reports of the National Academy of Sciences of Ukraine","volume":"41 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Технологія збільшення роздільної здатності мігрованих сейсмічних даних на основі використання нейронних мереж\",\"authors\":\"О.В. Носков\",\"doi\":\"10.15407/dopovidi2024.03.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Розроблено і програмно реалізовано математичну модель машинного навчання на базі нейронної мережі архітектури U-net для збільшення роздільної здатності та збільшення значення сигнал/завада для полів сейсмічної зйомки 2D і 3D досліджень із застосуванням синтетичного набору тренувальних даних. Описано будову моделі, наведено метрики якості тренування/валідації. Побудовано алгоритм для підготовки мігрованих сейсмічних даних у стандартному форматі SEGY для опрацювання за допомогою моделі і зворотною конвертацією у вхідний формат.\",\"PeriodicalId\":20898,\"journal\":{\"name\":\"Reports of the National Academy of Sciences of Ukraine\",\"volume\":\"41 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of the National Academy of Sciences of Ukraine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/dopovidi2024.03.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of the National Academy of Sciences of Ukraine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/dopovidi2024.03.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Технологія збільшення роздільної здатності мігрованих сейсмічних даних на основі використання нейронних мереж
Розроблено і програмно реалізовано математичну модель машинного навчання на базі нейронної мережі архітектури U-net для збільшення роздільної здатності та збільшення значення сигнал/завада для полів сейсмічної зйомки 2D і 3D досліджень із застосуванням синтетичного набору тренувальних даних. Описано будову моделі, наведено метрики якості тренування/валідації. Побудовано алгоритм для підготовки мігрованих сейсмічних даних у стандартному форматі SEGY для опрацювання за допомогою моделі і зворотною конвертацією у вхідний формат.