左旋多巴的量子级机器学习计算

IF 2.6 4区 生物学 Q2 BIOLOGY Computational Biology and Chemistry Pub Date : 2024-07-14 DOI:10.1016/j.compbiolchem.2024.108146
{"title":"左旋多巴的量子级机器学习计算","authors":"","doi":"10.1016/j.compbiolchem.2024.108146","DOIUrl":null,"url":null,"abstract":"<div><p>Many drug molecules contain functional groups, resulting in a torsional barrier corresponding to rotation around the bond linking the fragments. In medicinal chemistry and pharmaceutical sciences, inclusive of drug design studies, the exact calculation of the potential energy surface (PES) of these molecular torsions is extremely important and precious. Machine learning (ML), including deep learning (DL), is currently one of the most rapidly evolving tools in computer-aided drug discovery and molecular simulations. In this work, we used ANI-1x neural network potential as a quantum-level ML to predict the PESs of the L-3,4-dihydroxyphenylalanine (Levodopa) antiparkinsonian drug molecule. The electronic energies and structural parameters calculated by density functional theory (DFT) using the wB97X method and all possible Pople's basis sets indicated the 6–31G(d) basis set, when used with the wB97X functional, exhibits behavior similar to that of the ANI-1x model. The vibrational frequencies investigation showed a linear correlation between DFT and ML data. All ANI-1x calculations were completed quickly in a very short computing time. From this perspective, we expect the ANI-1x dataset applied in this work to be appreciably efficient and effective in computational structure-based drug design studies.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-level machine learning calculations of Levodopa\",\"authors\":\"\",\"doi\":\"10.1016/j.compbiolchem.2024.108146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many drug molecules contain functional groups, resulting in a torsional barrier corresponding to rotation around the bond linking the fragments. In medicinal chemistry and pharmaceutical sciences, inclusive of drug design studies, the exact calculation of the potential energy surface (PES) of these molecular torsions is extremely important and precious. Machine learning (ML), including deep learning (DL), is currently one of the most rapidly evolving tools in computer-aided drug discovery and molecular simulations. In this work, we used ANI-1x neural network potential as a quantum-level ML to predict the PESs of the L-3,4-dihydroxyphenylalanine (Levodopa) antiparkinsonian drug molecule. The electronic energies and structural parameters calculated by density functional theory (DFT) using the wB97X method and all possible Pople's basis sets indicated the 6–31G(d) basis set, when used with the wB97X functional, exhibits behavior similar to that of the ANI-1x model. The vibrational frequencies investigation showed a linear correlation between DFT and ML data. All ANI-1x calculations were completed quickly in a very short computing time. From this perspective, we expect the ANI-1x dataset applied in this work to be appreciably efficient and effective in computational structure-based drug design studies.</p></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124001348\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001348","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

许多药物分子都含有功能基团,从而产生与围绕连接片段的键旋转相对应的扭转障碍。在药物化学和制药科学(包括药物设计研究)中,精确计算这些分子扭转的势能面(PES)极为重要和珍贵。机器学习(ML),包括深度学习(DL),是目前计算机辅助药物发现和分子模拟领域发展最迅速的工具之一。在这项工作中,我们使用 ANI-1x 神经网络势作为量子级 ML 来预测 L-3,4-二羟基苯丙氨酸(左旋多巴)抗帕金森病药物分子的 PES。密度泛函理论(DFT)使用 wB97X 方法和所有可能的波普尔基集计算出的电子能量和结构参数表明,6-31G(d) 基集与 wB97X 函数一起使用时,表现出与 ANI-1x 模型相似的行为。振动频率调查显示,DFT 和 ML 数据之间存在线性相关。所有 ANI-1x 计算都在很短的计算时间内快速完成。从这个角度来看,我们希望本研究中应用的 ANI-1x 数据集能够在基于结构的药物设计计算研究中发挥显著的效率和效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum-level machine learning calculations of Levodopa

Many drug molecules contain functional groups, resulting in a torsional barrier corresponding to rotation around the bond linking the fragments. In medicinal chemistry and pharmaceutical sciences, inclusive of drug design studies, the exact calculation of the potential energy surface (PES) of these molecular torsions is extremely important and precious. Machine learning (ML), including deep learning (DL), is currently one of the most rapidly evolving tools in computer-aided drug discovery and molecular simulations. In this work, we used ANI-1x neural network potential as a quantum-level ML to predict the PESs of the L-3,4-dihydroxyphenylalanine (Levodopa) antiparkinsonian drug molecule. The electronic energies and structural parameters calculated by density functional theory (DFT) using the wB97X method and all possible Pople's basis sets indicated the 6–31G(d) basis set, when used with the wB97X functional, exhibits behavior similar to that of the ANI-1x model. The vibrational frequencies investigation showed a linear correlation between DFT and ML data. All ANI-1x calculations were completed quickly in a very short computing time. From this perspective, we expect the ANI-1x dataset applied in this work to be appreciably efficient and effective in computational structure-based drug design studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
期刊最新文献
ILYCROsite: Identification of lysine crotonylation sites based on FCM-GRNN undersampling technique A comprehensive bioinformatic analysis of the role of TGF-β1-stimulated activating transcription factor 3 by non-coding RNAs during breast cancer progression Unveiling therapeutic biomarkers and druggable targets in ALS: An integrative microarray analysis, molecular docking, and structural dynamic studies Accurately identifying positive and negative regulation of apoptosis using fusion features and machine learning methods Molecular descriptors and in silico studies of 4-((5-(decylthio)-4-methyl-4n-1,2,4-triazol-3-yl)methyl)morpholine as a potential drug for the treatment of fungal pathologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1