{"title":"评估浸润性乳腺癌淋巴管侵犯的综合方法:利用多模态磁共振成像结果、放射组学和深度学习分析瘤内和瘤周区域","authors":"Wen Liu , Li Li , Jiao Deng , Wei Li","doi":"10.1016/j.compmedimag.2024.102415","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To evaluate lymphovascular invasion (LVI) in breast cancer by comparing the diagnostic performance of preoperative multimodal magnetic resonance imaging (MRI)-based radiomics and deep-learning (DL) models.</p></div><div><h3>Methods</h3><p>This retrospective study included 262 patients with breast cancer—183 in the training cohort (144 LVI-negative and 39 LVI-positive cases) and 79 in the validation cohort (59 LVI-negative and 20 LVI-positive cases). Radiomics features were extracted from the intra- and peritumoral breast regions using multimodal MRI to generate gross tumor volume (GTV)_radiomics and gross tumor volume plus peritumoral volume (GPTV)_radiomics. Subsequently, DL models (GTV_DL and GPTV_DL) were constructed based on the GTV and GPTV to determine the LVI status. Finally, the most effective radiomics and DL models were integrated with imaging findings to establish a hybrid model, which was converted into a nomogram to quantify the LVI risk.</p></div><div><h3>Results</h3><p>The diagnostic efficiency of GPTV_DL was superior to that of GTV_DL (areas under the curve [AUCs], 0.771 and 0.720, respectively). Similarly, GPTV_radiomics outperformed GTV_radiomics (AUC, 0.685 and 0.636, respectively). Univariate and multivariate logistic regression analyses revealed an association between imaging findings, such as MRI-axillary lymph nodes and peritumoral edema (AUC, 0.665). The hybrid model achieved the highest accuracy by combining GPTV_DL, GPTV_radiomics, and imaging findings (AUC, 0.872).</p></div><div><h3>Conclusion</h3><p>The diagnostic efficiency of the GPTV-derived radiomics and DL models surpassed that of the GTV-derived models. Furthermore, the hybrid model, which incorporated GPTV_DL, GPTV_radiomics, and imaging findings, demonstrated the effective determination of LVI status prior to surgery in patients with breast cancer.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"116 ","pages":"Article 102415"},"PeriodicalIF":5.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive approach for evaluating lymphovascular invasion in invasive breast cancer: Leveraging multimodal MRI findings, radiomics, and deep learning analysis of intra- and peritumoral regions\",\"authors\":\"Wen Liu , Li Li , Jiao Deng , Wei Li\",\"doi\":\"10.1016/j.compmedimag.2024.102415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>To evaluate lymphovascular invasion (LVI) in breast cancer by comparing the diagnostic performance of preoperative multimodal magnetic resonance imaging (MRI)-based radiomics and deep-learning (DL) models.</p></div><div><h3>Methods</h3><p>This retrospective study included 262 patients with breast cancer—183 in the training cohort (144 LVI-negative and 39 LVI-positive cases) and 79 in the validation cohort (59 LVI-negative and 20 LVI-positive cases). Radiomics features were extracted from the intra- and peritumoral breast regions using multimodal MRI to generate gross tumor volume (GTV)_radiomics and gross tumor volume plus peritumoral volume (GPTV)_radiomics. Subsequently, DL models (GTV_DL and GPTV_DL) were constructed based on the GTV and GPTV to determine the LVI status. Finally, the most effective radiomics and DL models were integrated with imaging findings to establish a hybrid model, which was converted into a nomogram to quantify the LVI risk.</p></div><div><h3>Results</h3><p>The diagnostic efficiency of GPTV_DL was superior to that of GTV_DL (areas under the curve [AUCs], 0.771 and 0.720, respectively). Similarly, GPTV_radiomics outperformed GTV_radiomics (AUC, 0.685 and 0.636, respectively). Univariate and multivariate logistic regression analyses revealed an association between imaging findings, such as MRI-axillary lymph nodes and peritumoral edema (AUC, 0.665). The hybrid model achieved the highest accuracy by combining GPTV_DL, GPTV_radiomics, and imaging findings (AUC, 0.872).</p></div><div><h3>Conclusion</h3><p>The diagnostic efficiency of the GPTV-derived radiomics and DL models surpassed that of the GTV-derived models. Furthermore, the hybrid model, which incorporated GPTV_DL, GPTV_radiomics, and imaging findings, demonstrated the effective determination of LVI status prior to surgery in patients with breast cancer.</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"116 \",\"pages\":\"Article 102415\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000922\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000922","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A comprehensive approach for evaluating lymphovascular invasion in invasive breast cancer: Leveraging multimodal MRI findings, radiomics, and deep learning analysis of intra- and peritumoral regions
Purpose
To evaluate lymphovascular invasion (LVI) in breast cancer by comparing the diagnostic performance of preoperative multimodal magnetic resonance imaging (MRI)-based radiomics and deep-learning (DL) models.
Methods
This retrospective study included 262 patients with breast cancer—183 in the training cohort (144 LVI-negative and 39 LVI-positive cases) and 79 in the validation cohort (59 LVI-negative and 20 LVI-positive cases). Radiomics features were extracted from the intra- and peritumoral breast regions using multimodal MRI to generate gross tumor volume (GTV)_radiomics and gross tumor volume plus peritumoral volume (GPTV)_radiomics. Subsequently, DL models (GTV_DL and GPTV_DL) were constructed based on the GTV and GPTV to determine the LVI status. Finally, the most effective radiomics and DL models were integrated with imaging findings to establish a hybrid model, which was converted into a nomogram to quantify the LVI risk.
Results
The diagnostic efficiency of GPTV_DL was superior to that of GTV_DL (areas under the curve [AUCs], 0.771 and 0.720, respectively). Similarly, GPTV_radiomics outperformed GTV_radiomics (AUC, 0.685 and 0.636, respectively). Univariate and multivariate logistic regression analyses revealed an association between imaging findings, such as MRI-axillary lymph nodes and peritumoral edema (AUC, 0.665). The hybrid model achieved the highest accuracy by combining GPTV_DL, GPTV_radiomics, and imaging findings (AUC, 0.872).
Conclusion
The diagnostic efficiency of the GPTV-derived radiomics and DL models surpassed that of the GTV-derived models. Furthermore, the hybrid model, which incorporated GPTV_DL, GPTV_radiomics, and imaging findings, demonstrated the effective determination of LVI status prior to surgery in patients with breast cancer.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.