基于铁流体的电机:概念化和实验评估

Ahmad Darabi, Fazel Pourmirzaei Deylami, Morteza Sheikhian, Mohammad Ali Taheripour
{"title":"基于铁流体的电机:概念化和实验评估","authors":"Ahmad Darabi, Fazel Pourmirzaei Deylami, Morteza Sheikhian, Mohammad Ali Taheripour","doi":"10.1049/tje2.12408","DOIUrl":null,"url":null,"abstract":"This article intends to propose a new concept of electric machines that works based on a category of magnetic fluids called “ferrofluids”. For this purpose, a disc‐shaped rotor filled with ferrofluid material is employed instead of a common rotor of an axial‐flux machine, and the conceptual design of the new machine named here “axial‐flux ferrofluid electric machine (FFEM)” is presented. The operation principle of the FFEM is described and a dynamic‐transient model built on the d–q axes equivalent circuits is presented. Simulations are carried out by applying the given model in MATLAB and the results are investigated in different operating conditions. In order to identify the basic parameters and validate the simulation results, a prototype of the FFEM has been designed and manufactured, and some preliminary functional tests have been performed on the prototype. All simulation and experimental results indicate some distinguished excellent performances of the new machine. In the end, it can be stated briefly with some confidence that ferrofluid electric machines can have a high potential for future research and applications in various industries due to the simplicity of the structure, self‐starting capability, ability to work at a wide range of speeds and a flat torque profile.","PeriodicalId":510109,"journal":{"name":"The Journal of Engineering","volume":"262 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferrofluid‐based electrical machines: Conceptualization and experimental evaluation\",\"authors\":\"Ahmad Darabi, Fazel Pourmirzaei Deylami, Morteza Sheikhian, Mohammad Ali Taheripour\",\"doi\":\"10.1049/tje2.12408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article intends to propose a new concept of electric machines that works based on a category of magnetic fluids called “ferrofluids”. For this purpose, a disc‐shaped rotor filled with ferrofluid material is employed instead of a common rotor of an axial‐flux machine, and the conceptual design of the new machine named here “axial‐flux ferrofluid electric machine (FFEM)” is presented. The operation principle of the FFEM is described and a dynamic‐transient model built on the d–q axes equivalent circuits is presented. Simulations are carried out by applying the given model in MATLAB and the results are investigated in different operating conditions. In order to identify the basic parameters and validate the simulation results, a prototype of the FFEM has been designed and manufactured, and some preliminary functional tests have been performed on the prototype. All simulation and experimental results indicate some distinguished excellent performances of the new machine. In the end, it can be stated briefly with some confidence that ferrofluid electric machines can have a high potential for future research and applications in various industries due to the simplicity of the structure, self‐starting capability, ability to work at a wide range of speeds and a flat torque profile.\",\"PeriodicalId\":510109,\"journal\":{\"name\":\"The Journal of Engineering\",\"volume\":\"262 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/tje2.12408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/tje2.12408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在提出一种基于 "铁流体 "磁性流体的新电机概念。为此,本文采用了一个充满铁流体材料的圆盘形转子来代替轴向磁流体电机的普通转子,并介绍了这种新电机的概念设计,本文将其命名为 "轴向磁流体铁流体电机(FFEM)"。介绍了 FFEM 的工作原理,并提出了基于 d-q 轴等效电路的动态瞬态模型。通过在 MATLAB 中应用给定的模型进行了仿真,并对不同运行条件下的结果进行了研究。为了确定基本参数并验证仿真结果,设计并制造了 FFEM 原型,并对原型进行了一些初步功能测试。所有的模拟和实验结果都表明,这台新机器具有卓越的性能。最后,我们可以有把握地简要指出,由于结构简单、自启动能力强、工作速度范围广、扭矩曲线平坦,铁氟体电机在未来各行业的研究和应用中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ferrofluid‐based electrical machines: Conceptualization and experimental evaluation
This article intends to propose a new concept of electric machines that works based on a category of magnetic fluids called “ferrofluids”. For this purpose, a disc‐shaped rotor filled with ferrofluid material is employed instead of a common rotor of an axial‐flux machine, and the conceptual design of the new machine named here “axial‐flux ferrofluid electric machine (FFEM)” is presented. The operation principle of the FFEM is described and a dynamic‐transient model built on the d–q axes equivalent circuits is presented. Simulations are carried out by applying the given model in MATLAB and the results are investigated in different operating conditions. In order to identify the basic parameters and validate the simulation results, a prototype of the FFEM has been designed and manufactured, and some preliminary functional tests have been performed on the prototype. All simulation and experimental results indicate some distinguished excellent performances of the new machine. In the end, it can be stated briefly with some confidence that ferrofluid electric machines can have a high potential for future research and applications in various industries due to the simplicity of the structure, self‐starting capability, ability to work at a wide range of speeds and a flat torque profile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ferrofluid‐based electrical machines: Conceptualization and experimental evaluation Anti‐leakage transmission method of high privacy information in electric power communication network based on digital watermarking technology A high‐accuracy and robust diagnostic tool for gearbox faults in wind turbines Optimal scheduling of the stand‐alone micro grids considering the reliability cost A domain adaptation‐based convolutional neural network incorporating data augmentation for power system dynamic security assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1