利用改进的高效视频编码和背景建模进行视频显著性检测

Sharada P. Narasimha, Sanjeev C. Lingareddy
{"title":"利用改进的高效视频编码和背景建模进行视频显著性检测","authors":"Sharada P. Narasimha, Sanjeev C. Lingareddy","doi":"10.11591/ijres.v13.i2.pp431-440","DOIUrl":null,"url":null,"abstract":"Video saliency has a profound effect on our lives with its compression efficiency and precision. There have been several types of research done on image saliency but not on video saliency. This paper proposes a modified high efficiency video coding (HEVC) algorithm with background modelling and the implication of classification into coding blocks. This solution first employs the G-picture in the fourth frame as a long-term reference and then it is quantized based on the algorithm that segregates using the background features of the image. Then coding blocks are introduced to decrease the complexity of the HEVC code, reduce time consumption and overall speed up the process of saliency. The solution is experimented upon with the dynamic human fixation 1K (DHF1K) dataset and compared with several other state-of-the-art saliency methods to showcase the reliability and efficiency of the proposed solution.","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"115 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video saliency detection using modified high efficiency video coding and background modelling\",\"authors\":\"Sharada P. Narasimha, Sanjeev C. Lingareddy\",\"doi\":\"10.11591/ijres.v13.i2.pp431-440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video saliency has a profound effect on our lives with its compression efficiency and precision. There have been several types of research done on image saliency but not on video saliency. This paper proposes a modified high efficiency video coding (HEVC) algorithm with background modelling and the implication of classification into coding blocks. This solution first employs the G-picture in the fourth frame as a long-term reference and then it is quantized based on the algorithm that segregates using the background features of the image. Then coding blocks are introduced to decrease the complexity of the HEVC code, reduce time consumption and overall speed up the process of saliency. The solution is experimented upon with the dynamic human fixation 1K (DHF1K) dataset and compared with several other state-of-the-art saliency methods to showcase the reliability and efficiency of the proposed solution.\",\"PeriodicalId\":158991,\"journal\":{\"name\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"volume\":\"115 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijres.v13.i2.pp431-440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v13.i2.pp431-440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视频显著性的压缩效率和精确度对我们的生活影响深远。关于图像显著性的研究有多种类型,但关于视频显著性的研究却不多。本文提出了一种改进的高效视频编码(HEVC)算法,该算法具有背景建模和编码块分类的含义。该解决方案首先采用第四帧中的 G 图像作为长期参考,然后根据利用图像背景特征进行分离的算法对其进行量化。然后引入编码块,以降低 HEVC 代码的复杂性,减少时间消耗,并从整体上加快显著性处理过程。我们利用动态人类固定 1K (DHF1K) 数据集对该解决方案进行了实验,并与其他几种最先进的显著性方法进行了比较,以展示所提解决方案的可靠性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Video saliency detection using modified high efficiency video coding and background modelling
Video saliency has a profound effect on our lives with its compression efficiency and precision. There have been several types of research done on image saliency but not on video saliency. This paper proposes a modified high efficiency video coding (HEVC) algorithm with background modelling and the implication of classification into coding blocks. This solution first employs the G-picture in the fourth frame as a long-term reference and then it is quantized based on the algorithm that segregates using the background features of the image. Then coding blocks are introduced to decrease the complexity of the HEVC code, reduce time consumption and overall speed up the process of saliency. The solution is experimented upon with the dynamic human fixation 1K (DHF1K) dataset and compared with several other state-of-the-art saliency methods to showcase the reliability and efficiency of the proposed solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Internet of things based smart photovoltaic panel monitoring system An efficient novel dual deep network architecture for video forgery detection Video saliency detection using modified high efficiency video coding and background modelling A novel compression methodology for medical images using deep learning for high-speed transmission Frequency reconfigurable microstrip patch antenna for multiband applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1