SEG 野外夏令营:阿塞拜疆阿斯塔拉地区含水层的多重物理成像

Clara Jodry, Dashgin Abakarov, Zaur Bayramov, Javid Aliyev, Nigar Karimova, Murad Abdulla-Zada
{"title":"SEG 野外夏令营:阿塞拜疆阿斯塔拉地区含水层的多重物理成像","authors":"Clara Jodry, Dashgin Abakarov, Zaur Bayramov, Javid Aliyev, Nigar Karimova, Murad Abdulla-Zada","doi":"10.1190/tle43070453.1","DOIUrl":null,"url":null,"abstract":"Groundwater faces growing pressure due to human activities and the impacts of global climate change. Therefore, it is imperative to characterize near-surface aquifers, especially those that are unconfined because they are particularly vulnerable to these challenges. In Azerbaijan, alluvial plain aquifers represent a critical facet of the nation's water resources, yet they remain largely understudied. The objective of our study is to employ a multigeophysical survey (including electrical resistivity, seismic refraction, and ground-penetrating radar) to describe the subsurface attributes of an unconfined alluvial aquifer situated within an agricultural field in Astara, Azerbaijan. These data were acquired during the 2023 SEG Summer Field Camp by global students and specialists. Based on our general knowledge of the area, we interpret our findings as a subsurface with four distinct layers. The first is an initial 1 m thick soil layer covering the second layer, which is a more permeable unconfined aquifer likely consisting of a mixture of sand, pebbles, and gravel with a silty matrix (3 m thick). The third is a potential confining layer that is possibly clayey. The fourth layer is a presumed confined aquifer at a depth of 10 m. These results shed light on previously unstudied alluvial plain aquifers and contribute to comprehension of the hydrogeologic conditions at the local scale. To provide a broader understanding at the regional scale, the survey area should be extended and linked to borehole data to improve the interpretation of the geophysical results.","PeriodicalId":507626,"journal":{"name":"The Leading Edge","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SEG Summer Field Camp: Multigeophysical imaging of an aquifer in the Astara region of Azerbaijan\",\"authors\":\"Clara Jodry, Dashgin Abakarov, Zaur Bayramov, Javid Aliyev, Nigar Karimova, Murad Abdulla-Zada\",\"doi\":\"10.1190/tle43070453.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Groundwater faces growing pressure due to human activities and the impacts of global climate change. Therefore, it is imperative to characterize near-surface aquifers, especially those that are unconfined because they are particularly vulnerable to these challenges. In Azerbaijan, alluvial plain aquifers represent a critical facet of the nation's water resources, yet they remain largely understudied. The objective of our study is to employ a multigeophysical survey (including electrical resistivity, seismic refraction, and ground-penetrating radar) to describe the subsurface attributes of an unconfined alluvial aquifer situated within an agricultural field in Astara, Azerbaijan. These data were acquired during the 2023 SEG Summer Field Camp by global students and specialists. Based on our general knowledge of the area, we interpret our findings as a subsurface with four distinct layers. The first is an initial 1 m thick soil layer covering the second layer, which is a more permeable unconfined aquifer likely consisting of a mixture of sand, pebbles, and gravel with a silty matrix (3 m thick). The third is a potential confining layer that is possibly clayey. The fourth layer is a presumed confined aquifer at a depth of 10 m. These results shed light on previously unstudied alluvial plain aquifers and contribute to comprehension of the hydrogeologic conditions at the local scale. To provide a broader understanding at the regional scale, the survey area should be extended and linked to borehole data to improve the interpretation of the geophysical results.\",\"PeriodicalId\":507626,\"journal\":{\"name\":\"The Leading Edge\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Leading Edge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/tle43070453.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Leading Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/tle43070453.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于人类活动和全球气候变化的影响,地下水面临着越来越大的压力。因此,当务之急是确定近地表含水层的特征,尤其是那些非封闭含水层,因为它们特别容易受到这些挑战的影响。在阿塞拜疆,冲积平原含水层是该国水资源的一个重要方面,但对它们的研究却仍然很少。我们的研究目标是采用多种物理勘测方法(包括电阻率、地震折射和探地雷达)来描述位于阿塞拜疆阿斯塔拉农田内的无压冲积含水层的地下属性。这些数据是由全球学生和专家在 2023 年 SEG 野外夏令营期间获取的。根据我们对该地区的一般了解,我们将我们的发现解释为地下有四个不同的层。第一层是最初的 1 米厚土层,覆盖着第二层,第二层是渗透性更强的非承压含水层,可能由沙、卵石和砾石混合物组成,基质为淤泥(3 米厚)。第三层是潜在的承压层,可能为粘土质。这些结果揭示了以前未研究过的冲积平原含水层,有助于了解当地的水文地质条件。为了在区域范围内提供更广泛的了解,应扩大勘测区域,并与钻孔数据联系起来,以改进对地球物理结果的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SEG Summer Field Camp: Multigeophysical imaging of an aquifer in the Astara region of Azerbaijan
Groundwater faces growing pressure due to human activities and the impacts of global climate change. Therefore, it is imperative to characterize near-surface aquifers, especially those that are unconfined because they are particularly vulnerable to these challenges. In Azerbaijan, alluvial plain aquifers represent a critical facet of the nation's water resources, yet they remain largely understudied. The objective of our study is to employ a multigeophysical survey (including electrical resistivity, seismic refraction, and ground-penetrating radar) to describe the subsurface attributes of an unconfined alluvial aquifer situated within an agricultural field in Astara, Azerbaijan. These data were acquired during the 2023 SEG Summer Field Camp by global students and specialists. Based on our general knowledge of the area, we interpret our findings as a subsurface with four distinct layers. The first is an initial 1 m thick soil layer covering the second layer, which is a more permeable unconfined aquifer likely consisting of a mixture of sand, pebbles, and gravel with a silty matrix (3 m thick). The third is a potential confining layer that is possibly clayey. The fourth layer is a presumed confined aquifer at a depth of 10 m. These results shed light on previously unstudied alluvial plain aquifers and contribute to comprehension of the hydrogeologic conditions at the local scale. To provide a broader understanding at the regional scale, the survey area should be extended and linked to borehole data to improve the interpretation of the geophysical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Steckman Ridge: A naturally fractured underground gas storage field SEG Summer Field Camp: Multigeophysical imaging of an aquifer in the Astara region of Azerbaijan IMAGE Preview: Experience the geosciences around the world at IMAGE '24 Introduction to this special section: General submissions Seismic modeling using pseudo-impedance derived from physical models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1