空间传染病模型中的边缘效应

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Spatial and Spatio-Temporal Epidemiology Pub Date : 2024-08-01 DOI:10.1016/j.sste.2024.100673
Emil Hodzic-Santor , Rob Deardon
{"title":"空间传染病模型中的边缘效应","authors":"Emil Hodzic-Santor ,&nbsp;Rob Deardon","doi":"10.1016/j.sste.2024.100673","DOIUrl":null,"url":null,"abstract":"<div><p>Epidemic models serve as a useful analytical tool to study how a disease behaves in a given population. Individual-level models (ILMs) can incorporate individual-level covariate information including spatial information, accounting for heterogeneity within the population. However, the high-level data required to parameterize an ILM may often be available only for a sub-population of a larger population (e.g., a given county, province, or country). As a result, parameter estimates may be affected by edge effects caused by infection originating from outside the observed population. Here, we look at how such edge effects can bias parameter estimates for within the context of spatial ILMs, and suggest a method to improve model fitting in the presence of edge effects when some global measure of epidemic severity is available from the unobserved part of the population. We apply our models to simulated data, as well as data from the UK 2001 foot-and-mouth disease epidemic.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"50 ","pages":"Article 100673"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge effects in spatial infectious disease models\",\"authors\":\"Emil Hodzic-Santor ,&nbsp;Rob Deardon\",\"doi\":\"10.1016/j.sste.2024.100673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epidemic models serve as a useful analytical tool to study how a disease behaves in a given population. Individual-level models (ILMs) can incorporate individual-level covariate information including spatial information, accounting for heterogeneity within the population. However, the high-level data required to parameterize an ILM may often be available only for a sub-population of a larger population (e.g., a given county, province, or country). As a result, parameter estimates may be affected by edge effects caused by infection originating from outside the observed population. Here, we look at how such edge effects can bias parameter estimates for within the context of spatial ILMs, and suggest a method to improve model fitting in the presence of edge effects when some global measure of epidemic severity is available from the unobserved part of the population. We apply our models to simulated data, as well as data from the UK 2001 foot-and-mouth disease epidemic.</p></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"50 \",\"pages\":\"Article 100673\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

流行病模型是研究疾病在特定人群中表现的有用分析工具。个体水平模型(ILM)可以纳入个体水平的协变量信息,包括空间信息,以考虑人群中的异质性。然而,对个体水平模型进行参数化所需的高层次数据可能通常只能用于较大人群(如特定的县、省或国家)中的一个子人群。因此,参数估计可能会受到来自观察人群之外的感染所造成的边缘效应的影响。在此,我们将探讨在空间 ILM 的背景下,这种边缘效应会如何使参数估计产生偏差,并提出一种方法,在存在边缘效应的情况下,当可以从未被发现的部分人口中获得某种流行病严重程度的全球测量值时,可以改进模型拟合。我们将模型应用于模拟数据以及英国 2001 年口蹄疫疫情数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Edge effects in spatial infectious disease models

Epidemic models serve as a useful analytical tool to study how a disease behaves in a given population. Individual-level models (ILMs) can incorporate individual-level covariate information including spatial information, accounting for heterogeneity within the population. However, the high-level data required to parameterize an ILM may often be available only for a sub-population of a larger population (e.g., a given county, province, or country). As a result, parameter estimates may be affected by edge effects caused by infection originating from outside the observed population. Here, we look at how such edge effects can bias parameter estimates for within the context of spatial ILMs, and suggest a method to improve model fitting in the presence of edge effects when some global measure of epidemic severity is available from the unobserved part of the population. We apply our models to simulated data, as well as data from the UK 2001 foot-and-mouth disease epidemic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
期刊最新文献
Association between urban green space and transmission of COVID-19 in Oslo, Norway: A Bayesian SIR modeling approach Employment industry and opioid overdose risk: A pre- and post-COVID-19 comparison in Kentucky and Massachusetts 2018–2021 Editorial Board Spatial pattern of all cause excess mortality in Swiss districts during the pandemic years 1890, 1918 and 2020 Multiple “spaces”: Using wildlife surveillance, climatic variables, and spatial statistics to identify and map a climatic niche for endemic plague in California, U.S.A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1