Pauline De Berdt , Elodie Deltour , Eric Pauly , Noelia Gordillo , Frédéric Lin , Etienne Sokal , Mustapha Najimi
{"title":"在无血清培养条件下扩增用于肝脏再生治疗的人类异体肝源祖细胞","authors":"Pauline De Berdt , Elodie Deltour , Eric Pauly , Noelia Gordillo , Frédéric Lin , Etienne Sokal , Mustapha Najimi","doi":"10.1016/j.jcyt.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><div>Human allogeneic liver-derived progenitor cells (HALPCs) display advanced ability to differentiate into hepatocyte-like cells and exhibit potent immunomodulatory, anti-inflammatory, and anti-fibrotic properties. HALPCs have been successfully manufactured under good manufacturing practice (GMP) and are currently in clinical development. A previous phase 2a trial demonstrated the safety of peripheral intravenous infusions of HALPCs and preliminary evidence of the cells’ properties to restore liver function in patients with acute-on-chronic liver failure (ACLF), thus potentially improving their survival. A phase 2b trial is currently ongoing across multiple centers (NCT04229901) to obtain proof-of-concept on efficacy and additional safety. HALPCs are currently manufactured using fetal bovine serum (FBS), which can reveal qualitative and quantitative variations between batches. The use of serum-free medium (SFM) represents an alternative means to overcome this variability while also complying fully with regulations. The aim of this study was to compare current FBS-containing culture conditions with two industry-available GMP-compliant SFMs: StemMACS (Miltenyi Biotec, Bergisch Gladbach, Germany) and PRIME-XV (FUJIFILM Irvine Scientific, Santa Ana, California, USA).</div><div>The proliferation of HALPCs was significantly stimulated by both SFMs, which shortened both their emergence period and population doubling time. This effect was correlated with a significant improvement in their genetic stability as analyzed by conventional karyotyping. The expression profile (identity and purity) and functionality of HALPCs cultured in SFM were maintained, as demonstrated by flow cytometry and enzyme-linked immunoassay (ELISA), respectively. Their potency, evaluated via prostaglandin E2 (PGE2) secretion, showed a similar effect on CD4<sup>+</sup> T-cell proliferation in FBS and SFM conditions. Furthermore, a greater proportion of HALPCs cultured in SFM showed enhanced expression of tissue factor (CD142) compared with the FBS condition.</div><div>Altogether, SFM conditions enabled consistent HALPC quality to be achieved without altering their expression and functional profiles.</div></div>","PeriodicalId":50597,"journal":{"name":"Cytotherapy","volume":"26 12","pages":"Pages 1571-1578"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expansion of human allogeneic liver-derived progenitor cells for liver regenerative therapy in serum-free culture conditions\",\"authors\":\"Pauline De Berdt , Elodie Deltour , Eric Pauly , Noelia Gordillo , Frédéric Lin , Etienne Sokal , Mustapha Najimi\",\"doi\":\"10.1016/j.jcyt.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human allogeneic liver-derived progenitor cells (HALPCs) display advanced ability to differentiate into hepatocyte-like cells and exhibit potent immunomodulatory, anti-inflammatory, and anti-fibrotic properties. HALPCs have been successfully manufactured under good manufacturing practice (GMP) and are currently in clinical development. A previous phase 2a trial demonstrated the safety of peripheral intravenous infusions of HALPCs and preliminary evidence of the cells’ properties to restore liver function in patients with acute-on-chronic liver failure (ACLF), thus potentially improving their survival. A phase 2b trial is currently ongoing across multiple centers (NCT04229901) to obtain proof-of-concept on efficacy and additional safety. HALPCs are currently manufactured using fetal bovine serum (FBS), which can reveal qualitative and quantitative variations between batches. The use of serum-free medium (SFM) represents an alternative means to overcome this variability while also complying fully with regulations. The aim of this study was to compare current FBS-containing culture conditions with two industry-available GMP-compliant SFMs: StemMACS (Miltenyi Biotec, Bergisch Gladbach, Germany) and PRIME-XV (FUJIFILM Irvine Scientific, Santa Ana, California, USA).</div><div>The proliferation of HALPCs was significantly stimulated by both SFMs, which shortened both their emergence period and population doubling time. This effect was correlated with a significant improvement in their genetic stability as analyzed by conventional karyotyping. The expression profile (identity and purity) and functionality of HALPCs cultured in SFM were maintained, as demonstrated by flow cytometry and enzyme-linked immunoassay (ELISA), respectively. Their potency, evaluated via prostaglandin E2 (PGE2) secretion, showed a similar effect on CD4<sup>+</sup> T-cell proliferation in FBS and SFM conditions. Furthermore, a greater proportion of HALPCs cultured in SFM showed enhanced expression of tissue factor (CD142) compared with the FBS condition.</div><div>Altogether, SFM conditions enabled consistent HALPC quality to be achieved without altering their expression and functional profiles.</div></div>\",\"PeriodicalId\":50597,\"journal\":{\"name\":\"Cytotherapy\",\"volume\":\"26 12\",\"pages\":\"Pages 1571-1578\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1465324924008004\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1465324924008004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Expansion of human allogeneic liver-derived progenitor cells for liver regenerative therapy in serum-free culture conditions
Human allogeneic liver-derived progenitor cells (HALPCs) display advanced ability to differentiate into hepatocyte-like cells and exhibit potent immunomodulatory, anti-inflammatory, and anti-fibrotic properties. HALPCs have been successfully manufactured under good manufacturing practice (GMP) and are currently in clinical development. A previous phase 2a trial demonstrated the safety of peripheral intravenous infusions of HALPCs and preliminary evidence of the cells’ properties to restore liver function in patients with acute-on-chronic liver failure (ACLF), thus potentially improving their survival. A phase 2b trial is currently ongoing across multiple centers (NCT04229901) to obtain proof-of-concept on efficacy and additional safety. HALPCs are currently manufactured using fetal bovine serum (FBS), which can reveal qualitative and quantitative variations between batches. The use of serum-free medium (SFM) represents an alternative means to overcome this variability while also complying fully with regulations. The aim of this study was to compare current FBS-containing culture conditions with two industry-available GMP-compliant SFMs: StemMACS (Miltenyi Biotec, Bergisch Gladbach, Germany) and PRIME-XV (FUJIFILM Irvine Scientific, Santa Ana, California, USA).
The proliferation of HALPCs was significantly stimulated by both SFMs, which shortened both their emergence period and population doubling time. This effect was correlated with a significant improvement in their genetic stability as analyzed by conventional karyotyping. The expression profile (identity and purity) and functionality of HALPCs cultured in SFM were maintained, as demonstrated by flow cytometry and enzyme-linked immunoassay (ELISA), respectively. Their potency, evaluated via prostaglandin E2 (PGE2) secretion, showed a similar effect on CD4+ T-cell proliferation in FBS and SFM conditions. Furthermore, a greater proportion of HALPCs cultured in SFM showed enhanced expression of tissue factor (CD142) compared with the FBS condition.
Altogether, SFM conditions enabled consistent HALPC quality to be achieved without altering their expression and functional profiles.
期刊介绍:
The journal brings readers the latest developments in the fast moving field of cellular therapy in man. This includes cell therapy for cancer, immune disorders, inherited diseases, tissue repair and regenerative medicine. The journal covers the science, translational development and treatment with variety of cell types including hematopoietic stem cells, immune cells (dendritic cells, NK, cells, T cells, antigen presenting cells) mesenchymal stromal cells, adipose cells, nerve, muscle, vascular and endothelial cells, and induced pluripotential stem cells. We also welcome manuscripts on subcellular derivatives such as exosomes. A specific focus is on translational research that brings cell therapy to the clinic. Cytotherapy publishes original papers, reviews, position papers editorials, commentaries and letters to the editor. We welcome "Protocols in Cytotherapy" bringing standard operating procedure for production specific cell types for clinical use within the reach of the readership.