Silvio E. Quincozes, Célio Albuquerque, Diego G. Passos, Daniel Mossé
{"title":"ERENO:为智能电网生成真实 IEC-61850 入侵检测数据集的框架","authors":"Silvio E. Quincozes, Célio Albuquerque, Diego G. Passos, Daniel Mossé","doi":"10.1109/TDSC.2023.3336857","DOIUrl":null,"url":null,"abstract":"Connected and digital electricity substations based on IEC–61850 standards enable novel applications. On the other hand, such connectivity also creates an extended attack surface. Therefore, Intrusion Detection Systems (IDSs) have become an essential component of safeguarding substations from malicious activities. However, in contrast to traditional information technology systems, there is a serious lack of realistic data for training, testing, and evaluating IDSs in smart grid scenarios. Many existing substation IDSs rely on datasets from other contexts or on proprietary datasets that do not allow reproducibility, validation, or performance comparison with competing algorithms. To address this issue, we propose the Efficacious Reproducer Engine for Network Operations (ERENO) synthetic traffic generation framework based on the IEC–61850 standard specifications. As an additional contribution, and as a proof-of-concept, we create and make available a suite of realistic IEC–61850 datasets that model 8 use cases, namely traffic for seven common attacks and one for normal network traffic. Based on those datasets, we further evaluate how enriched features combining raw data from the substation can significantly improve intrusion detection performance. Our results suggest that it can improve F1-Score up to 47.22% for masquerade attacks.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ERENO: A Framework for Generating Realistic IEC–61850 Intrusion Detection Datasets for Smart Grids\",\"authors\":\"Silvio E. Quincozes, Célio Albuquerque, Diego G. Passos, Daniel Mossé\",\"doi\":\"10.1109/TDSC.2023.3336857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Connected and digital electricity substations based on IEC–61850 standards enable novel applications. On the other hand, such connectivity also creates an extended attack surface. Therefore, Intrusion Detection Systems (IDSs) have become an essential component of safeguarding substations from malicious activities. However, in contrast to traditional information technology systems, there is a serious lack of realistic data for training, testing, and evaluating IDSs in smart grid scenarios. Many existing substation IDSs rely on datasets from other contexts or on proprietary datasets that do not allow reproducibility, validation, or performance comparison with competing algorithms. To address this issue, we propose the Efficacious Reproducer Engine for Network Operations (ERENO) synthetic traffic generation framework based on the IEC–61850 standard specifications. As an additional contribution, and as a proof-of-concept, we create and make available a suite of realistic IEC–61850 datasets that model 8 use cases, namely traffic for seven common attacks and one for normal network traffic. Based on those datasets, we further evaluate how enriched features combining raw data from the substation can significantly improve intrusion detection performance. Our results suggest that it can improve F1-Score up to 47.22% for masquerade attacks.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2023.3336857\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2023.3336857","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
ERENO: A Framework for Generating Realistic IEC–61850 Intrusion Detection Datasets for Smart Grids
Connected and digital electricity substations based on IEC–61850 standards enable novel applications. On the other hand, such connectivity also creates an extended attack surface. Therefore, Intrusion Detection Systems (IDSs) have become an essential component of safeguarding substations from malicious activities. However, in contrast to traditional information technology systems, there is a serious lack of realistic data for training, testing, and evaluating IDSs in smart grid scenarios. Many existing substation IDSs rely on datasets from other contexts or on proprietary datasets that do not allow reproducibility, validation, or performance comparison with competing algorithms. To address this issue, we propose the Efficacious Reproducer Engine for Network Operations (ERENO) synthetic traffic generation framework based on the IEC–61850 standard specifications. As an additional contribution, and as a proof-of-concept, we create and make available a suite of realistic IEC–61850 datasets that model 8 use cases, namely traffic for seven common attacks and one for normal network traffic. Based on those datasets, we further evaluate how enriched features combining raw data from the substation can significantly improve intrusion detection performance. Our results suggest that it can improve F1-Score up to 47.22% for masquerade attacks.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.