Andrew P. Brooks , John Spencer , Nicholas J.C. Doriean , Robin Thwaites , James Daley , Tim Pietsch , Jorg Hacker , Justin Stout
{"title":"大堡礁集水区冲积沟壑整治的效果","authors":"Andrew P. Brooks , John Spencer , Nicholas J.C. Doriean , Robin Thwaites , James Daley , Tim Pietsch , Jorg Hacker , Justin Stout","doi":"10.1016/j.iswcr.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents data from a large-scale Before After Control Impact (BACI) design field experiment that measured the sediment reduction achieved by remediating large alluvial gullies. The study was carried out on Bonnie Doon Creek on the lower Burdekin River, in Queensland Australia. Prior to remediation, the four large alluvial gully complexes (active area of ∼17ha) were conservatively estimated to be delivering 5800 ± 1500 t of fine sediment (<20 μm) per year (20 year average). The experiment demonstrated that the average remediation effectiveness across 10 different treatments was a 96%–99% reduction in fine sediment yield (or an annualised reduction of ∼5500t). High resolution lidar DEM of Difference (DoD) derived sediment yields in the unremediated gullies were found to be, on average, 58% lower than yields derived from monitored suspended sediment concentration (SSC) data, albeit with some uncertainty. These data support the notion that even high resolution (0.1m) lidar DoD yields are missing erosion driven by rainfall driven downwearing across all internal gully surfaces that is below the limit of detection (LOD) of the lidar. The results highlight that the greatest uncertainty in predicting the sediment abatement from gully remediation is associated with the determination of the baseline sediment yield of each gully. Future research effort should be focused on improving our understanding of baseline (multi-decadal) sediment yields, and monitored (annual) yields in different types of unremediated gullies. This is dependent on developing a detailed understanding of how these gullies evolve through time, and what the processes are that drive ongoing gully growth.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"13 1","pages":"Pages 102-121"},"PeriodicalIF":7.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effectiveness of alluvial gully remediation in Great Barrier Reef catchments\",\"authors\":\"Andrew P. Brooks , John Spencer , Nicholas J.C. Doriean , Robin Thwaites , James Daley , Tim Pietsch , Jorg Hacker , Justin Stout\",\"doi\":\"10.1016/j.iswcr.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents data from a large-scale Before After Control Impact (BACI) design field experiment that measured the sediment reduction achieved by remediating large alluvial gullies. The study was carried out on Bonnie Doon Creek on the lower Burdekin River, in Queensland Australia. Prior to remediation, the four large alluvial gully complexes (active area of ∼17ha) were conservatively estimated to be delivering 5800 ± 1500 t of fine sediment (<20 μm) per year (20 year average). The experiment demonstrated that the average remediation effectiveness across 10 different treatments was a 96%–99% reduction in fine sediment yield (or an annualised reduction of ∼5500t). High resolution lidar DEM of Difference (DoD) derived sediment yields in the unremediated gullies were found to be, on average, 58% lower than yields derived from monitored suspended sediment concentration (SSC) data, albeit with some uncertainty. These data support the notion that even high resolution (0.1m) lidar DoD yields are missing erosion driven by rainfall driven downwearing across all internal gully surfaces that is below the limit of detection (LOD) of the lidar. The results highlight that the greatest uncertainty in predicting the sediment abatement from gully remediation is associated with the determination of the baseline sediment yield of each gully. Future research effort should be focused on improving our understanding of baseline (multi-decadal) sediment yields, and monitored (annual) yields in different types of unremediated gullies. This is dependent on developing a detailed understanding of how these gullies evolve through time, and what the processes are that drive ongoing gully growth.</div></div>\",\"PeriodicalId\":48622,\"journal\":{\"name\":\"International Soil and Water Conservation Research\",\"volume\":\"13 1\",\"pages\":\"Pages 102-121\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Soil and Water Conservation Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095633924000510\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633924000510","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The effectiveness of alluvial gully remediation in Great Barrier Reef catchments
This study presents data from a large-scale Before After Control Impact (BACI) design field experiment that measured the sediment reduction achieved by remediating large alluvial gullies. The study was carried out on Bonnie Doon Creek on the lower Burdekin River, in Queensland Australia. Prior to remediation, the four large alluvial gully complexes (active area of ∼17ha) were conservatively estimated to be delivering 5800 ± 1500 t of fine sediment (<20 μm) per year (20 year average). The experiment demonstrated that the average remediation effectiveness across 10 different treatments was a 96%–99% reduction in fine sediment yield (or an annualised reduction of ∼5500t). High resolution lidar DEM of Difference (DoD) derived sediment yields in the unremediated gullies were found to be, on average, 58% lower than yields derived from monitored suspended sediment concentration (SSC) data, albeit with some uncertainty. These data support the notion that even high resolution (0.1m) lidar DoD yields are missing erosion driven by rainfall driven downwearing across all internal gully surfaces that is below the limit of detection (LOD) of the lidar. The results highlight that the greatest uncertainty in predicting the sediment abatement from gully remediation is associated with the determination of the baseline sediment yield of each gully. Future research effort should be focused on improving our understanding of baseline (multi-decadal) sediment yields, and monitored (annual) yields in different types of unremediated gullies. This is dependent on developing a detailed understanding of how these gullies evolve through time, and what the processes are that drive ongoing gully growth.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research