Weichuang Qin , Lujia Zhang , Yichen Yang , Wei Zhou , Shuting Hou , Jie Huang , Bei Gao
{"title":"合理设计短链脱氢酶 DHDR 以高效合成 (S)-equol","authors":"Weichuang Qin , Lujia Zhang , Yichen Yang , Wei Zhou , Shuting Hou , Jie Huang , Bei Gao","doi":"10.1016/j.enzmictec.2024.110480","DOIUrl":null,"url":null,"abstract":"<div><p>(<em>S</em>)-equol, the most influential metabolite of daidzein in <em>vivo</em>, has aroused great attention due to the excellent biological activities. Although existing studies have accomplished the construction of its heterologous synthetic pathway in the context of anaerobicity and inefficiency of natural strains, the low productivity of (<em>S</em>)-equol limits its industrial application. Here, rational design strategies based on decreasing the pocket steric hindrance and fine-tuning the pocket microenvironment to systematically redesign the binding pocket of enzyme were developed and processed to the rate-limiting enzyme dihydrodaidzein reductase in (<em>S</em>)-equol synthesis. After iterative combinatorial mutagenesis, an effective mutant S118G/T169A capable of significantly increasing (<em>S</em>)-equol yield was obtained. Computational analyses illustrated that the main reason of the increased activity relied on the decreased critical distance and more stable interacting conformation. Then, the reaction optimization was performed, and the recombinant <em>Escherichia coli</em> whole-cell biocatalyst harboring S118G/T169A enabled the efficient conversion of 2 mM daidzein to (<em>S</em>)-equol, achieving conversion rate of 84.5 %, which was 2.9 times higher than that of the parental strain expressing wide type dihydrodaidzein reductase. This study provides an effective idea and a feasible method for enzyme modification and whole-cell catalytic synthesis of (<em>S</em>)-equol, and will greatly accelerate the process of industrial production.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of short-chain dehydrogenase DHDR for efficient synthesis of (S)-equol\",\"authors\":\"Weichuang Qin , Lujia Zhang , Yichen Yang , Wei Zhou , Shuting Hou , Jie Huang , Bei Gao\",\"doi\":\"10.1016/j.enzmictec.2024.110480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>(<em>S</em>)-equol, the most influential metabolite of daidzein in <em>vivo</em>, has aroused great attention due to the excellent biological activities. Although existing studies have accomplished the construction of its heterologous synthetic pathway in the context of anaerobicity and inefficiency of natural strains, the low productivity of (<em>S</em>)-equol limits its industrial application. Here, rational design strategies based on decreasing the pocket steric hindrance and fine-tuning the pocket microenvironment to systematically redesign the binding pocket of enzyme were developed and processed to the rate-limiting enzyme dihydrodaidzein reductase in (<em>S</em>)-equol synthesis. After iterative combinatorial mutagenesis, an effective mutant S118G/T169A capable of significantly increasing (<em>S</em>)-equol yield was obtained. Computational analyses illustrated that the main reason of the increased activity relied on the decreased critical distance and more stable interacting conformation. Then, the reaction optimization was performed, and the recombinant <em>Escherichia coli</em> whole-cell biocatalyst harboring S118G/T169A enabled the efficient conversion of 2 mM daidzein to (<em>S</em>)-equol, achieving conversion rate of 84.5 %, which was 2.9 times higher than that of the parental strain expressing wide type dihydrodaidzein reductase. This study provides an effective idea and a feasible method for enzyme modification and whole-cell catalytic synthesis of (<em>S</em>)-equol, and will greatly accelerate the process of industrial production.</p></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022924000875\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000875","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Rational design of short-chain dehydrogenase DHDR for efficient synthesis of (S)-equol
(S)-equol, the most influential metabolite of daidzein in vivo, has aroused great attention due to the excellent biological activities. Although existing studies have accomplished the construction of its heterologous synthetic pathway in the context of anaerobicity and inefficiency of natural strains, the low productivity of (S)-equol limits its industrial application. Here, rational design strategies based on decreasing the pocket steric hindrance and fine-tuning the pocket microenvironment to systematically redesign the binding pocket of enzyme were developed and processed to the rate-limiting enzyme dihydrodaidzein reductase in (S)-equol synthesis. After iterative combinatorial mutagenesis, an effective mutant S118G/T169A capable of significantly increasing (S)-equol yield was obtained. Computational analyses illustrated that the main reason of the increased activity relied on the decreased critical distance and more stable interacting conformation. Then, the reaction optimization was performed, and the recombinant Escherichia coli whole-cell biocatalyst harboring S118G/T169A enabled the efficient conversion of 2 mM daidzein to (S)-equol, achieving conversion rate of 84.5 %, which was 2.9 times higher than that of the parental strain expressing wide type dihydrodaidzein reductase. This study provides an effective idea and a feasible method for enzyme modification and whole-cell catalytic synthesis of (S)-equol, and will greatly accelerate the process of industrial production.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.