关于 OWA、机器学习和大数据:综合融资战略优于宇宙

Panagiotis Chountas, Mustafa Hajmohammed, Ismael Rhemat
{"title":"关于 OWA、机器学习和大数据:综合融资战略优于宇宙","authors":"Panagiotis Chountas, Mustafa Hajmohammed, Ismael Rhemat","doi":"10.7546/nifs.2024.30.2.113-120","DOIUrl":null,"url":null,"abstract":"This paper provides a holistic view of open-world machine learning by investigating class discovery, and class incremental learning under OWA. The challenges, principles, and limitations of current methodologies are discussed in detail. Finally, we position IFS over multiple universes as a formalism to capture the evolution in Big Data as part of incremental learning.","PeriodicalId":509276,"journal":{"name":"Notes on Intuitionistic Fuzzy Sets","volume":"13 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On OWA, Machine Learning and Big Data: The case for IFS over universes\",\"authors\":\"Panagiotis Chountas, Mustafa Hajmohammed, Ismael Rhemat\",\"doi\":\"10.7546/nifs.2024.30.2.113-120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a holistic view of open-world machine learning by investigating class discovery, and class incremental learning under OWA. The challenges, principles, and limitations of current methodologies are discussed in detail. Finally, we position IFS over multiple universes as a formalism to capture the evolution in Big Data as part of incremental learning.\",\"PeriodicalId\":509276,\"journal\":{\"name\":\"Notes on Intuitionistic Fuzzy Sets\",\"volume\":\"13 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Intuitionistic Fuzzy Sets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nifs.2024.30.2.113-120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Intuitionistic Fuzzy Sets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nifs.2024.30.2.113-120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过研究 OWA 下的类发现和类增量学习,为开放世界机器学习提供了一个整体视角。本文详细讨论了当前方法论所面临的挑战、原理和局限性。最后,我们将多个宇宙的 IFS 定义为一种形式主义,用于捕捉大数据中作为增量学习一部分的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On OWA, Machine Learning and Big Data: The case for IFS over universes
This paper provides a holistic view of open-world machine learning by investigating class discovery, and class incremental learning under OWA. The challenges, principles, and limitations of current methodologies are discussed in detail. Finally, we position IFS over multiple universes as a formalism to capture the evolution in Big Data as part of incremental learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on intuitionistic fuzzy implications. Part 4 Two de-I-fuzzification procedures for intuitionistic fuzzy information InterCriteria Analysis as an intelligent tool for decision making: Investigation of Polish University Rankings A brief note on intuitionistic fuzzy operators Ranking of factors affecting pricing in construction projects by intuitionistic fuzzy analytic hierarchy process with ordered pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1