用于医疗保健数据隐私保护分发和访问控制的稳健多密钥授权系统

IF 4.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computer Communications Pub Date : 2024-07-14 DOI:10.1016/j.comcom.2024.07.005
Amitesh Singh Rajput , Arnav Agarwal , Kiran B. Raja
{"title":"用于医疗保健数据隐私保护分发和访问控制的稳健多密钥授权系统","authors":"Amitesh Singh Rajput ,&nbsp;Arnav Agarwal ,&nbsp;Kiran B. Raja","doi":"10.1016/j.comcom.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>Innovation in medical technology and communication has rapidly empowered the development of smart healthcare devices. This has led to privacy breaches, threats and vulnerabilities to sensitive patient data that result in unwanted or targeted advertising. Previous research has focused on protecting access to sensitive patient data from unauthorized entities, especially by defining roles of healthcare entities in the overall system with their access privileges. However, such efforts need to be further robust due to the involvement of a single key authority that may lead to a critical point of failure. In this paper, this vulnerability has been addressed by developing a novel approach to crucially increase the number of key authorities using homomorphic encryption. The proposed approach ensures genuine access to the verified entity by forming a subsystem of <em>t</em> key authorities from a total of <em>n</em> authorities <span><math><mrow><mo>(</mo><mi>t</mi><mo>&lt;</mo><mi>n</mi><mo>)</mo></mrow></math></span>. This creates rigorous challenge to a malicious attacker, obfuscating the selection and functioning of key access packets in a multi-key authority setup. The results of the proposed approach achieve medical data confidentiality, entity authentication, and strategic data sharing. The security of the proposed approach is assessed for different vulnerabilities of the overall system using a challenge–response game model. Moreover, the proposed approach is found to be better and secure as compared to existing schemes.</p></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"225 ","pages":"Pages 195-204"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust multi-key authority system for privacy-preserving distribution and access control of healthcare data\",\"authors\":\"Amitesh Singh Rajput ,&nbsp;Arnav Agarwal ,&nbsp;Kiran B. Raja\",\"doi\":\"10.1016/j.comcom.2024.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Innovation in medical technology and communication has rapidly empowered the development of smart healthcare devices. This has led to privacy breaches, threats and vulnerabilities to sensitive patient data that result in unwanted or targeted advertising. Previous research has focused on protecting access to sensitive patient data from unauthorized entities, especially by defining roles of healthcare entities in the overall system with their access privileges. However, such efforts need to be further robust due to the involvement of a single key authority that may lead to a critical point of failure. In this paper, this vulnerability has been addressed by developing a novel approach to crucially increase the number of key authorities using homomorphic encryption. The proposed approach ensures genuine access to the verified entity by forming a subsystem of <em>t</em> key authorities from a total of <em>n</em> authorities <span><math><mrow><mo>(</mo><mi>t</mi><mo>&lt;</mo><mi>n</mi><mo>)</mo></mrow></math></span>. This creates rigorous challenge to a malicious attacker, obfuscating the selection and functioning of key access packets in a multi-key authority setup. The results of the proposed approach achieve medical data confidentiality, entity authentication, and strategic data sharing. The security of the proposed approach is assessed for different vulnerabilities of the overall system using a challenge–response game model. Moreover, the proposed approach is found to be better and secure as compared to existing schemes.</p></div>\",\"PeriodicalId\":55224,\"journal\":{\"name\":\"Computer Communications\",\"volume\":\"225 \",\"pages\":\"Pages 195-204\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014036642400241X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014036642400241X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

医疗技术和通信领域的创新迅速推动了智能医疗设备的发展。这导致了敏感患者数据的隐私泄露、威胁和漏洞,从而产生了不需要的或有针对性的广告。以往的研究侧重于保护未经授权的实体访问敏感的患者数据,特别是通过定义医疗实体在整个系统中的角色及其访问权限。然而,由于单个密钥机构的参与可能会导致关键故障点,因此这些工作需要进一步加强。本文通过开发一种新方法,利用同态加密技术大幅增加密钥授权的数量,从而解决了这一漏洞。所提出的方法通过从总共 n 个密钥机构(t<n)中组成一个由 t 个密钥机构组成的子系统,确保对已验证实体的真正访问。这对恶意攻击者提出了严峻的挑战,混淆了多密钥机构设置中密钥访问数据包的选择和功能。所提方法的结果实现了医疗数据保密、实体身份验证和战略数据共享。利用挑战-响应博弈模型,针对整个系统的不同漏洞评估了所提方法的安全性。此外,与现有方案相比,发现所提出的方法更好、更安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust multi-key authority system for privacy-preserving distribution and access control of healthcare data

Innovation in medical technology and communication has rapidly empowered the development of smart healthcare devices. This has led to privacy breaches, threats and vulnerabilities to sensitive patient data that result in unwanted or targeted advertising. Previous research has focused on protecting access to sensitive patient data from unauthorized entities, especially by defining roles of healthcare entities in the overall system with their access privileges. However, such efforts need to be further robust due to the involvement of a single key authority that may lead to a critical point of failure. In this paper, this vulnerability has been addressed by developing a novel approach to crucially increase the number of key authorities using homomorphic encryption. The proposed approach ensures genuine access to the verified entity by forming a subsystem of t key authorities from a total of n authorities (t<n). This creates rigorous challenge to a malicious attacker, obfuscating the selection and functioning of key access packets in a multi-key authority setup. The results of the proposed approach achieve medical data confidentiality, entity authentication, and strategic data sharing. The security of the proposed approach is assessed for different vulnerabilities of the overall system using a challenge–response game model. Moreover, the proposed approach is found to be better and secure as compared to existing schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Communications
Computer Communications 工程技术-电信学
CiteScore
14.10
自引率
5.00%
发文量
397
审稿时长
66 days
期刊介绍: Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms. Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.
期刊最新文献
Trustless privacy-preserving data aggregation on Ethereum with hypercube network topology Trajectory design of UAV-aided energy-harvesting relay networks in the terahertz band A dual-tier adaptive one-class classification IDS for emerging cyberthreats Editorial Board A deep dive into cybersecurity solutions for AI-driven IoT-enabled smart cities in advanced communication networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1