Baris Kasapoglu, Halil Sezen, Tunc Aldemir, Richard Denning
{"title":"选择脆性方法对核电站地震风险量化的影响","authors":"Baris Kasapoglu, Halil Sezen, Tunc Aldemir, Richard Denning","doi":"10.1016/j.net.2024.07.023","DOIUrl":null,"url":null,"abstract":"<div><div>Development and evaluation of seismic fragility of structures and components is crucial in seismic probabilistic risk assessment of nuclear power plants. Simulation-based fragility approaches are a prevailing trend in the literature, while industry-recommended methodologies rely heavily on engineering judgment and deterministic analysis. In this paper, four critical components are selected, modeled and analyzed as a case study. Their fragilities are evaluated using both state-of-the-art fragility methods and code-recommended methods with approximate models. The impact of the choice of fragility approaches on the fragilities of the components and conditional core damage probability of the plant are assessed. The findings reveal that the recommended approaches employed with approximate models have limitations in estimating the median capacity of complex equipment. While there is a notable variance in the treatment of uncertainty among fragility approaches, its influence on core damage probability remains limited unless the component is the primary contributor to core damage.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"56 12","pages":"Pages 5154-5174"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of choice of fragility approaches on seismic risk quantification of nuclear power plants\",\"authors\":\"Baris Kasapoglu, Halil Sezen, Tunc Aldemir, Richard Denning\",\"doi\":\"10.1016/j.net.2024.07.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Development and evaluation of seismic fragility of structures and components is crucial in seismic probabilistic risk assessment of nuclear power plants. Simulation-based fragility approaches are a prevailing trend in the literature, while industry-recommended methodologies rely heavily on engineering judgment and deterministic analysis. In this paper, four critical components are selected, modeled and analyzed as a case study. Their fragilities are evaluated using both state-of-the-art fragility methods and code-recommended methods with approximate models. The impact of the choice of fragility approaches on the fragilities of the components and conditional core damage probability of the plant are assessed. The findings reveal that the recommended approaches employed with approximate models have limitations in estimating the median capacity of complex equipment. While there is a notable variance in the treatment of uncertainty among fragility approaches, its influence on core damage probability remains limited unless the component is the primary contributor to core damage.</div></div>\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":\"56 12\",\"pages\":\"Pages 5154-5174\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1738573324003383\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573324003383","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Impact of choice of fragility approaches on seismic risk quantification of nuclear power plants
Development and evaluation of seismic fragility of structures and components is crucial in seismic probabilistic risk assessment of nuclear power plants. Simulation-based fragility approaches are a prevailing trend in the literature, while industry-recommended methodologies rely heavily on engineering judgment and deterministic analysis. In this paper, four critical components are selected, modeled and analyzed as a case study. Their fragilities are evaluated using both state-of-the-art fragility methods and code-recommended methods with approximate models. The impact of the choice of fragility approaches on the fragilities of the components and conditional core damage probability of the plant are assessed. The findings reveal that the recommended approaches employed with approximate models have limitations in estimating the median capacity of complex equipment. While there is a notable variance in the treatment of uncertainty among fragility approaches, its influence on core damage probability remains limited unless the component is the primary contributor to core damage.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development