硬脂酸/纳米纤维素复合相变储能材料的制备与性能

IF 0.7 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science Pub Date : 2024-07-01 DOI:10.5755/j02.ms.36560
Yufeng Zhao, Yang Chen
{"title":"硬脂酸/纳米纤维素复合相变储能材料的制备与性能","authors":"Yufeng Zhao, Yang Chen","doi":"10.5755/j02.ms.36560","DOIUrl":null,"url":null,"abstract":"To solve the problems of liquid phase leakage and poor thermal conductivity of organic phase change energy storage materials, a novel composite phase change energy storage material (SA/CNF) based on stearic acid (SA) and nanocellulose (CNF) was prepared in this study and added graphene to enhance its thermal conductivity. For the prepared composite phase change materials (SFs) with different ratios, shape stability, and testing experiments showed that the maximum adsorption rate of CNF on SA reached 80 %. The properties of SA/CNF were then characterized by various instruments. The results show that SA and CNF are compounded together by physical interaction. More than 93 % of SA in the composite phase change energy storage material SA/CNF is able to store and release heat through the phase change process, and the latent heat of phase change of pure SA is 206.3 J/g, while the latent heat of phase change of the composite phase change material SA/CNF with 20 % of CNF is 156.2 J/g, and they both have good cycling stability. The addition of graphene enhances the thermal conductivity of SA/CNF to a large extent, and the thermal conductivity at a graphene ratio of 5 % is 261 % higher than that of SA/CNF without graphene. SA/CNF is an environmentally friendly energy storage material with very high application prospects.","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Properties of Stearic Acid/Nanocellulose Composite Phase Change Energy Storage Materials\",\"authors\":\"Yufeng Zhao, Yang Chen\",\"doi\":\"10.5755/j02.ms.36560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problems of liquid phase leakage and poor thermal conductivity of organic phase change energy storage materials, a novel composite phase change energy storage material (SA/CNF) based on stearic acid (SA) and nanocellulose (CNF) was prepared in this study and added graphene to enhance its thermal conductivity. For the prepared composite phase change materials (SFs) with different ratios, shape stability, and testing experiments showed that the maximum adsorption rate of CNF on SA reached 80 %. The properties of SA/CNF were then characterized by various instruments. The results show that SA and CNF are compounded together by physical interaction. More than 93 % of SA in the composite phase change energy storage material SA/CNF is able to store and release heat through the phase change process, and the latent heat of phase change of pure SA is 206.3 J/g, while the latent heat of phase change of the composite phase change material SA/CNF with 20 % of CNF is 156.2 J/g, and they both have good cycling stability. The addition of graphene enhances the thermal conductivity of SA/CNF to a large extent, and the thermal conductivity at a graphene ratio of 5 % is 261 % higher than that of SA/CNF without graphene. SA/CNF is an environmentally friendly energy storage material with very high application prospects.\",\"PeriodicalId\":18230,\"journal\":{\"name\":\"Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.ms.36560\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5755/j02.ms.36560","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决有机相变储能材料液相泄漏和导热性差的问题,本研究制备了一种基于硬脂酸(SA)和纳米纤维素(CNF)的新型复合相变储能材料(SA/CNF),并添加了石墨烯以增强其导热性。对于制备的不同比例、形状稳定性的复合相变材料(SFs),测试实验表明,CNF 在 SA 上的最大吸附率达到 80%。随后,各种仪器对 SA/CNF 的性能进行了表征。结果表明,SA 和 CNF 通过物理作用复合在一起。在复合相变储能材料 SA/CNF 中,93% 以上的 SA 能够通过相变过程储存和释放热量,纯 SA 的相变潜热为 206.3 J/g,而含有 20% CNF 的复合相变材料 SA/CNF 的相变潜热为 156.2 J/g,两者都具有良好的循环稳定性。石墨烯的加入在很大程度上提高了 SA/CNF 的热导率,石墨烯比例为 5% 时的热导率比不添加石墨烯的 SA/CNF 高出 261%。SA/CNF 是一种环境友好型储能材料,具有很高的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and Properties of Stearic Acid/Nanocellulose Composite Phase Change Energy Storage Materials
To solve the problems of liquid phase leakage and poor thermal conductivity of organic phase change energy storage materials, a novel composite phase change energy storage material (SA/CNF) based on stearic acid (SA) and nanocellulose (CNF) was prepared in this study and added graphene to enhance its thermal conductivity. For the prepared composite phase change materials (SFs) with different ratios, shape stability, and testing experiments showed that the maximum adsorption rate of CNF on SA reached 80 %. The properties of SA/CNF were then characterized by various instruments. The results show that SA and CNF are compounded together by physical interaction. More than 93 % of SA in the composite phase change energy storage material SA/CNF is able to store and release heat through the phase change process, and the latent heat of phase change of pure SA is 206.3 J/g, while the latent heat of phase change of the composite phase change material SA/CNF with 20 % of CNF is 156.2 J/g, and they both have good cycling stability. The addition of graphene enhances the thermal conductivity of SA/CNF to a large extent, and the thermal conductivity at a graphene ratio of 5 % is 261 % higher than that of SA/CNF without graphene. SA/CNF is an environmentally friendly energy storage material with very high application prospects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science
Materials Science 工程技术-材料科学:综合
CiteScore
1.60
自引率
44.40%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Materials Science reports on current research into such problems as cracking, fatigue and fracture, especially in active environments as well as corrosion and anticorrosion protection of structural metallic and polymer materials, and the development of new materials.
期刊最新文献
Influence of Nanomodification on the Microstructure of the Metal of Welded Joints of Low-Alloy Steels Stress State of a Soft Interlayer under Conditions of Plane and Axisymmetric Strains Modeling of Laser-Modified Layer Reinforced With Silicon Carbide Particles on an Aluminum Alloy Formation Conditions and Properties of High-Entropy Alloys Creating σ-Phase Development of the Methodology for Monitoring the Technical State of Bridge Structures and Establishment of Safe Operating Period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1