{"title":"基于拜占庭弹性共识协议的完全去中心化、支持隐私的联盟学习系统","authors":"Andras Ferenczi, Costin Bădică","doi":"10.1016/j.simpat.2024.102987","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel blockchain-based Federated Learning (FL) system that introduces a Byzantine-resilient consensus protocol that performs well in the presence of adversarial participants. Unlike existing state-of-the-art, this system can be deployed in a fully decentralized manner, meaning it does not rely on any single actor to function correctly. Using a Smart Contract-driven workflow coupled with a commitment scheme and a differential privacy-based solution, we ensure training integrity, prevent plagiarism, and protect against leakage of sensitive data while performing effective federated training. We demonstrate the system’s effectiveness by performing simulation and implementation of an end-to-end proof of concept. Our practical implementation showcases the system’s efficiency on a single computer with multiple trainers, revealing low memory demands and manageable network and block I/O, which suggest scalability to larger, more complex networks. The paper concludes by exploring future enhancements, including advanced cryptographic methods for enhanced privacy and potential applications extending the system’s utility to broader domains within FL. Our work lays the groundwork for a new generation of decentralized learning systems, promising increased adoption in real-world scenarios where data privacy and security are of paramount concern.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 102987"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24001011/pdfft?md5=eca713730aa3fea4361d904312891ea2&pid=1-s2.0-S1569190X24001011-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fully decentralized privacy-enabled Federated Learning system based on Byzantine-resilient consensus protocol\",\"authors\":\"Andras Ferenczi, Costin Bădică\",\"doi\":\"10.1016/j.simpat.2024.102987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a novel blockchain-based Federated Learning (FL) system that introduces a Byzantine-resilient consensus protocol that performs well in the presence of adversarial participants. Unlike existing state-of-the-art, this system can be deployed in a fully decentralized manner, meaning it does not rely on any single actor to function correctly. Using a Smart Contract-driven workflow coupled with a commitment scheme and a differential privacy-based solution, we ensure training integrity, prevent plagiarism, and protect against leakage of sensitive data while performing effective federated training. We demonstrate the system’s effectiveness by performing simulation and implementation of an end-to-end proof of concept. Our practical implementation showcases the system’s efficiency on a single computer with multiple trainers, revealing low memory demands and manageable network and block I/O, which suggest scalability to larger, more complex networks. The paper concludes by exploring future enhancements, including advanced cryptographic methods for enhanced privacy and potential applications extending the system’s utility to broader domains within FL. Our work lays the groundwork for a new generation of decentralized learning systems, promising increased adoption in real-world scenarios where data privacy and security are of paramount concern.</p></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"136 \",\"pages\":\"Article 102987\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24001011/pdfft?md5=eca713730aa3fea4361d904312891ea2&pid=1-s2.0-S1569190X24001011-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24001011\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001011","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Fully decentralized privacy-enabled Federated Learning system based on Byzantine-resilient consensus protocol
We present a novel blockchain-based Federated Learning (FL) system that introduces a Byzantine-resilient consensus protocol that performs well in the presence of adversarial participants. Unlike existing state-of-the-art, this system can be deployed in a fully decentralized manner, meaning it does not rely on any single actor to function correctly. Using a Smart Contract-driven workflow coupled with a commitment scheme and a differential privacy-based solution, we ensure training integrity, prevent plagiarism, and protect against leakage of sensitive data while performing effective federated training. We demonstrate the system’s effectiveness by performing simulation and implementation of an end-to-end proof of concept. Our practical implementation showcases the system’s efficiency on a single computer with multiple trainers, revealing low memory demands and manageable network and block I/O, which suggest scalability to larger, more complex networks. The paper concludes by exploring future enhancements, including advanced cryptographic methods for enhanced privacy and potential applications extending the system’s utility to broader domains within FL. Our work lays the groundwork for a new generation of decentralized learning systems, promising increased adoption in real-world scenarios where data privacy and security are of paramount concern.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.