Chaitra Soppinahally Nataraju, D. K. Sreekantha, K. Sairam
{"title":"用于无线体域网络中人体通信的硬件实现的安全收发器","authors":"Chaitra Soppinahally Nataraju, D. K. Sreekantha, K. Sairam","doi":"10.11591/ijeecs.v35.i1.pp601-609","DOIUrl":null,"url":null,"abstract":"Wireless body area networks (WBANs), featuring wearable and implantable devices for collecting physiological data are increasingly critical in healthcare for enabling continuous remote monitoring, diagnostic improvements, and treatment optimization. Secure communication within WBANs is essential to protect sensitive health data from unauthorized access and manipulation. This paper introduces a novel secure digital (SD)- human body communication (HBC) Transceiver (TR) system, tailored for WBAN applications, that prioritizes security and offers significant enhancements in size, power efficiency, speed, and data transmission efficiency over current solutions. Leveraging a combination of frequency-selective (FS) digital transmission with walsh codes (WCs) or quadrature amplitude modulation (QAM), and incorporating one-round encryption and decryption modules, the system complies with the IEEE 802.15.6 standard, ensuring broad compatibility. Specifically, the QAM-based SD-HBC TR system exhibits a 4% reduction in chip area, a 7.6% increase in operating frequency, a 3.4% decrease in power consumption, a 27.5% reduction in latency, and improvements of 33% in throughput and 35.5% in efficiency. Importantly, it achieves a bit error rate (BER) of up to 10-8 , demonstrating high reliability across communication methods. This research significantly advances secure communication in WBANs, offering a promising approach for enhancing the reliability, efficiency, and security of healthcare monitoring technologies.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware-realized secure transceiver for human body communication in wireless body area networks\",\"authors\":\"Chaitra Soppinahally Nataraju, D. K. Sreekantha, K. Sairam\",\"doi\":\"10.11591/ijeecs.v35.i1.pp601-609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless body area networks (WBANs), featuring wearable and implantable devices for collecting physiological data are increasingly critical in healthcare for enabling continuous remote monitoring, diagnostic improvements, and treatment optimization. Secure communication within WBANs is essential to protect sensitive health data from unauthorized access and manipulation. This paper introduces a novel secure digital (SD)- human body communication (HBC) Transceiver (TR) system, tailored for WBAN applications, that prioritizes security and offers significant enhancements in size, power efficiency, speed, and data transmission efficiency over current solutions. Leveraging a combination of frequency-selective (FS) digital transmission with walsh codes (WCs) or quadrature amplitude modulation (QAM), and incorporating one-round encryption and decryption modules, the system complies with the IEEE 802.15.6 standard, ensuring broad compatibility. Specifically, the QAM-based SD-HBC TR system exhibits a 4% reduction in chip area, a 7.6% increase in operating frequency, a 3.4% decrease in power consumption, a 27.5% reduction in latency, and improvements of 33% in throughput and 35.5% in efficiency. Importantly, it achieves a bit error rate (BER) of up to 10-8 , demonstrating high reliability across communication methods. This research significantly advances secure communication in WBANs, offering a promising approach for enhancing the reliability, efficiency, and security of healthcare monitoring technologies.\",\"PeriodicalId\":13480,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijeecs.v35.i1.pp601-609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp601-609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Hardware-realized secure transceiver for human body communication in wireless body area networks
Wireless body area networks (WBANs), featuring wearable and implantable devices for collecting physiological data are increasingly critical in healthcare for enabling continuous remote monitoring, diagnostic improvements, and treatment optimization. Secure communication within WBANs is essential to protect sensitive health data from unauthorized access and manipulation. This paper introduces a novel secure digital (SD)- human body communication (HBC) Transceiver (TR) system, tailored for WBAN applications, that prioritizes security and offers significant enhancements in size, power efficiency, speed, and data transmission efficiency over current solutions. Leveraging a combination of frequency-selective (FS) digital transmission with walsh codes (WCs) or quadrature amplitude modulation (QAM), and incorporating one-round encryption and decryption modules, the system complies with the IEEE 802.15.6 standard, ensuring broad compatibility. Specifically, the QAM-based SD-HBC TR system exhibits a 4% reduction in chip area, a 7.6% increase in operating frequency, a 3.4% decrease in power consumption, a 27.5% reduction in latency, and improvements of 33% in throughput and 35.5% in efficiency. Importantly, it achieves a bit error rate (BER) of up to 10-8 , demonstrating high reliability across communication methods. This research significantly advances secure communication in WBANs, offering a promising approach for enhancing the reliability, efficiency, and security of healthcare monitoring technologies.
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]