评估在美国部署全国规模的热化学塑料废物再循环基础设施的经济和环境效益

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-07-10 DOI:10.1016/j.compchemeng.2024.108800
{"title":"评估在美国部署全国规模的热化学塑料废物再循环基础设施的经济和环境效益","authors":"","doi":"10.1016/j.compchemeng.2024.108800","DOIUrl":null,"url":null,"abstract":"<div><p>Emerging chemical technologies can upcycle plastic waste by producing high-value polymers and other products. In this work, we study the economic and environmental benefits of deploying an upcycling infrastructure in the continental United States for producing low-density polyethylene (LDPE) and polypropylene (PP) from post-consumer plastic waste. Our analysis is based on a computational framework that integrates techno-economic analysis, life-cycle assessment, and value chain optimization. Our results demonstrate that the infrastructure could generate a market of nearly 20 billion USD per year and that this market is robust to various externalities. Our analysis also indicates that the infrastructure can achieve a plastic-to-plastic degree of circularity of 34% relative to residential plastic waste production, and leads to significant environmental benefits over alternative waste disposal methods, including 69%–75% lower greenhouse gas emissions than waste-to-energy systems and 38 million tonnes of avoided landfill waste per year.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the economic and environmental benefits of deploying a national-scale, thermo-chemical plastic waste upcycling infrastructure in the United States\",\"authors\":\"\",\"doi\":\"10.1016/j.compchemeng.2024.108800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Emerging chemical technologies can upcycle plastic waste by producing high-value polymers and other products. In this work, we study the economic and environmental benefits of deploying an upcycling infrastructure in the continental United States for producing low-density polyethylene (LDPE) and polypropylene (PP) from post-consumer plastic waste. Our analysis is based on a computational framework that integrates techno-economic analysis, life-cycle assessment, and value chain optimization. Our results demonstrate that the infrastructure could generate a market of nearly 20 billion USD per year and that this market is robust to various externalities. Our analysis also indicates that the infrastructure can achieve a plastic-to-plastic degree of circularity of 34% relative to residential plastic waste production, and leads to significant environmental benefits over alternative waste disposal methods, including 69%–75% lower greenhouse gas emissions than waste-to-energy systems and 38 million tonnes of avoided landfill waste per year.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002187\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002187","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

新兴的化学技术可以通过生产高价值聚合物和其他产品,实现塑料废弃物的循环再利用。在这项工作中,我们研究了在美国大陆部署升级再循环基础设施,利用消费后塑料废物生产低密度聚乙烯(LDPE)和聚丙烯(PP)的经济和环境效益。我们的分析基于一个计算框架,该框架整合了技术经济分析、生命周期评估和价值链优化。我们的结果表明,该基础设施每年可产生近 200 亿美元的市场,并且该市场对各种外部因素具有稳健性。我们的分析还表明,相对于住宅塑料垃圾的生产,该基础设施可实现 34% 的 "塑料到塑料 "循环程度,与其他垃圾处理方法相比,可带来显著的环境效益,包括温室气体排放量比废物变能源系统低 69%-75% 以及每年避免填埋 3800 万吨垃圾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating the economic and environmental benefits of deploying a national-scale, thermo-chemical plastic waste upcycling infrastructure in the United States

Emerging chemical technologies can upcycle plastic waste by producing high-value polymers and other products. In this work, we study the economic and environmental benefits of deploying an upcycling infrastructure in the continental United States for producing low-density polyethylene (LDPE) and polypropylene (PP) from post-consumer plastic waste. Our analysis is based on a computational framework that integrates techno-economic analysis, life-cycle assessment, and value chain optimization. Our results demonstrate that the infrastructure could generate a market of nearly 20 billion USD per year and that this market is robust to various externalities. Our analysis also indicates that the infrastructure can achieve a plastic-to-plastic degree of circularity of 34% relative to residential plastic waste production, and leads to significant environmental benefits over alternative waste disposal methods, including 69%–75% lower greenhouse gas emissions than waste-to-energy systems and 38 million tonnes of avoided landfill waste per year.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Rapid design of combination antimicrobial therapy against Acinetobacter baumannii A tray-by-tray method for the conceptual design of dividing wall columns A comprehensive modeling, analysis, and optimization of two phase, non–isobaric, and non–isothermal PEM fuel cell Scale up analysis of a plasmon-enhanced ethylene oxide production process Integrated risk management and maintenance planning in Oil and Gas Supply Chain operations under market uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1