通过 ML 驱动的网络内流量整形有效缓解 DDoS

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Dependable and Secure Computing Pub Date : 2024-07-01 DOI:10.1109/TDSC.2023.3349180
Ziming Zhao, Zhuotao Liu, Huan Chen, Fan Zhang, Zhu Song, Zhaoxuan Li
{"title":"通过 ML 驱动的网络内流量整形有效缓解 DDoS","authors":"Ziming Zhao, Zhuotao Liu, Huan Chen, Fan Zhang, Zhu Song, Zhaoxuan Li","doi":"10.1109/TDSC.2023.3349180","DOIUrl":null,"url":null,"abstract":"Defending against Distributed Denial of Service (DDoS) attacks is a fundamental problem in the Internet. Over the past few decades, the research and industry communities have proposed a variety of solutions, from adding incremental capabilities to the existing Internet routing stack, to clean-slate future Internet architectures, and to widely deployed commercial DDoS prevention services. Yet a recent interview with over 100 security practitioners in multiple sectors reveals that existing solutions are <italic>still insufficient against</italic>, due to either unenforceable protocol deployment or non-comprehensive traffic filters. This seemingly endless arms race with attackers probably means that we need a fundamental paradigm shift. In this paper, we propose a new DDoS prevention paradigm named <italic>preference-driven and in-network enforced traffic shaping</italic>, aiming to explore the novel DDoS prevention norms that focus on delivering victim-preferred traffic rather than consistently chasing after the DDoS attacks. Towards this end, we propose <inline-formula><tex-math notation=\"LaTeX\">${\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\"sans-serif\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\"zhao-ieq1-3349180.gif\"/></alternatives></inline-formula>, a novel DDoS prevention system that provides reliable delivery of victim-preferred traffic <italic>without</italic> full knowledge of DDoS attacks. At a very high level, the core innovative design of <inline-formula><tex-math notation=\"LaTeX\">${\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\"sans-serif\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\"zhao-ieq2-3349180.gif\"/></alternatives></inline-formula> embraces the advances in Machine Learning (ML) and new network dataplane primitives, by <italic>encoding</italic> the victim’s traffic preference (in the form of complex ML models) into dataplane packet scheduling algorithms such that the victim-preferred traffic is forwarded with priority at line-speed, regardless of the attacker strategy. We implement a prototype of <inline-formula><tex-math notation=\"LaTeX\">${\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\"sans-serif\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\"zhao-ieq3-3349180.gif\"/></alternatives></inline-formula> in 11,560 lines of code, and extensively evaluate it on our testbed. The results show that <italic>a single instance of</italic> <italic><inline-formula><tex-math notation=\"LaTeX\">${\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\"sans-serif\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\"zhao-ieq4-3349180.gif\"/></alternatives></inline-formula></italic> can forward 99.93% of victim-desired traffic when facing previously unseen attacks, while imposing less than 0.1% forwarding overhead on a dataplane with 80 Gbps upstream links and a 40 Gbps bottleneck.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effective DDoS Mitigation via ML-Driven In-Network Traffic Shaping\",\"authors\":\"Ziming Zhao, Zhuotao Liu, Huan Chen, Fan Zhang, Zhu Song, Zhaoxuan Li\",\"doi\":\"10.1109/TDSC.2023.3349180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defending against Distributed Denial of Service (DDoS) attacks is a fundamental problem in the Internet. Over the past few decades, the research and industry communities have proposed a variety of solutions, from adding incremental capabilities to the existing Internet routing stack, to clean-slate future Internet architectures, and to widely deployed commercial DDoS prevention services. Yet a recent interview with over 100 security practitioners in multiple sectors reveals that existing solutions are <italic>still insufficient against</italic>, due to either unenforceable protocol deployment or non-comprehensive traffic filters. This seemingly endless arms race with attackers probably means that we need a fundamental paradigm shift. In this paper, we propose a new DDoS prevention paradigm named <italic>preference-driven and in-network enforced traffic shaping</italic>, aiming to explore the novel DDoS prevention norms that focus on delivering victim-preferred traffic rather than consistently chasing after the DDoS attacks. Towards this end, we propose <inline-formula><tex-math notation=\\\"LaTeX\\\">${\\\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\\\"sans-serif\\\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\\\"zhao-ieq1-3349180.gif\\\"/></alternatives></inline-formula>, a novel DDoS prevention system that provides reliable delivery of victim-preferred traffic <italic>without</italic> full knowledge of DDoS attacks. At a very high level, the core innovative design of <inline-formula><tex-math notation=\\\"LaTeX\\\">${\\\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\\\"sans-serif\\\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\\\"zhao-ieq2-3349180.gif\\\"/></alternatives></inline-formula> embraces the advances in Machine Learning (ML) and new network dataplane primitives, by <italic>encoding</italic> the victim’s traffic preference (in the form of complex ML models) into dataplane packet scheduling algorithms such that the victim-preferred traffic is forwarded with priority at line-speed, regardless of the attacker strategy. We implement a prototype of <inline-formula><tex-math notation=\\\"LaTeX\\\">${\\\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\\\"sans-serif\\\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\\\"zhao-ieq3-3349180.gif\\\"/></alternatives></inline-formula> in 11,560 lines of code, and extensively evaluate it on our testbed. The results show that <italic>a single instance of</italic> <italic><inline-formula><tex-math notation=\\\"LaTeX\\\">${\\\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\\\"sans-serif\\\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\\\"zhao-ieq4-3349180.gif\\\"/></alternatives></inline-formula></italic> can forward 99.93% of victim-desired traffic when facing previously unseen attacks, while imposing less than 0.1% forwarding overhead on a dataplane with 80 Gbps upstream links and a 40 Gbps bottleneck.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2023.3349180\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2023.3349180","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 4

摘要

防御分布式拒绝服务(DDoS)攻击是互联网的一个基本问题。在过去的几十年里,研究界和产业界提出了各种解决方案,从在现有互联网路由堆栈中增加增量功能,到清一色的未来互联网架构,再到广泛部署的商业 DDoS 防范服务,不一而足。然而,最近对多个行业 100 多名安全从业人员的采访显示,由于协议部署无法强制执行或流量过滤器不全面,现有的解决方案仍然不足以应对。这种与攻击者之间看似无休止的军备竞赛可能意味着我们需要从根本上转变模式。在本文中,我们提出了一种名为 "偏好驱动和网络内强制流量整形 "的新型 DDoS 防范范例,旨在探索新型 DDoS 防范规范,重点是提供受害者偏好的流量,而不是一味地追逐 DDoS 攻击。为此,我们提出了${\sf DFNet}$DFNet,这是一种新型 DDoS 防范系统,它能在不完全了解 DDoS 攻击的情况下可靠地提供受害者首选流量。在高层次上,${\sf DFNet}$DFNet的核心创新设计采用了机器学习(ML)和新型网络数据平面基元的先进技术,将受害者的流量偏好(以复杂ML模型的形式)编码到数据平面数据包调度算法中,从而使受害者偏好的流量以线速优先转发,而与攻击者的策略无关。我们用 11,560 行代码实现了 ${sf DFNet}$DFNet 原型,并在测试平台上对其进行了广泛评估。结果表明,在面对以前从未见过的攻击时,${\sf DFNet}$DFNet的单个实例可以转发99.93%的受害者所需的流量,同时在具有80 Gbps上游链路和40 Gbps瓶颈的数据平面上,转发开销小于0.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective DDoS Mitigation via ML-Driven In-Network Traffic Shaping
Defending against Distributed Denial of Service (DDoS) attacks is a fundamental problem in the Internet. Over the past few decades, the research and industry communities have proposed a variety of solutions, from adding incremental capabilities to the existing Internet routing stack, to clean-slate future Internet architectures, and to widely deployed commercial DDoS prevention services. Yet a recent interview with over 100 security practitioners in multiple sectors reveals that existing solutions are still insufficient against, due to either unenforceable protocol deployment or non-comprehensive traffic filters. This seemingly endless arms race with attackers probably means that we need a fundamental paradigm shift. In this paper, we propose a new DDoS prevention paradigm named preference-driven and in-network enforced traffic shaping, aiming to explore the novel DDoS prevention norms that focus on delivering victim-preferred traffic rather than consistently chasing after the DDoS attacks. Towards this end, we propose ${\sf DFNet}$DFNet, a novel DDoS prevention system that provides reliable delivery of victim-preferred traffic without full knowledge of DDoS attacks. At a very high level, the core innovative design of ${\sf DFNet}$DFNet embraces the advances in Machine Learning (ML) and new network dataplane primitives, by encoding the victim’s traffic preference (in the form of complex ML models) into dataplane packet scheduling algorithms such that the victim-preferred traffic is forwarded with priority at line-speed, regardless of the attacker strategy. We implement a prototype of ${\sf DFNet}$DFNet in 11,560 lines of code, and extensively evaluate it on our testbed. The results show that a single instance of ${\sf DFNet}$DFNet can forward 99.93% of victim-desired traffic when facing previously unseen attacks, while imposing less than 0.1% forwarding overhead on a dataplane with 80 Gbps upstream links and a 40 Gbps bottleneck.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
期刊最新文献
Blockchain Based Auditable Access Control For Business Processes With Event Driven Policies. DSChain: A Blockchain System for Complete Lifecycle Security of Data in Internet of Things Privacy-Preserving and Energy-Saving Random Forest-Based Disease Detection Framework for Green Internet of Things in Mobile Healthcare Networks IvyRedaction: Enabling Atomic, Consistent and Accountable Cross-Chain Rewriting Multi-Adjustable Join Schemes With Adaptive Indistinguishably Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1