Ziming Zhao, Zhuotao Liu, Huan Chen, Fan Zhang, Zhu Song, Zhaoxuan Li
{"title":"通过 ML 驱动的网络内流量整形有效缓解 DDoS","authors":"Ziming Zhao, Zhuotao Liu, Huan Chen, Fan Zhang, Zhu Song, Zhaoxuan Li","doi":"10.1109/TDSC.2023.3349180","DOIUrl":null,"url":null,"abstract":"Defending against Distributed Denial of Service (DDoS) attacks is a fundamental problem in the Internet. Over the past few decades, the research and industry communities have proposed a variety of solutions, from adding incremental capabilities to the existing Internet routing stack, to clean-slate future Internet architectures, and to widely deployed commercial DDoS prevention services. Yet a recent interview with over 100 security practitioners in multiple sectors reveals that existing solutions are <italic>still insufficient against</italic>, due to either unenforceable protocol deployment or non-comprehensive traffic filters. This seemingly endless arms race with attackers probably means that we need a fundamental paradigm shift. In this paper, we propose a new DDoS prevention paradigm named <italic>preference-driven and in-network enforced traffic shaping</italic>, aiming to explore the novel DDoS prevention norms that focus on delivering victim-preferred traffic rather than consistently chasing after the DDoS attacks. Towards this end, we propose <inline-formula><tex-math notation=\"LaTeX\">${\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\"sans-serif\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\"zhao-ieq1-3349180.gif\"/></alternatives></inline-formula>, a novel DDoS prevention system that provides reliable delivery of victim-preferred traffic <italic>without</italic> full knowledge of DDoS attacks. At a very high level, the core innovative design of <inline-formula><tex-math notation=\"LaTeX\">${\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\"sans-serif\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\"zhao-ieq2-3349180.gif\"/></alternatives></inline-formula> embraces the advances in Machine Learning (ML) and new network dataplane primitives, by <italic>encoding</italic> the victim’s traffic preference (in the form of complex ML models) into dataplane packet scheduling algorithms such that the victim-preferred traffic is forwarded with priority at line-speed, regardless of the attacker strategy. We implement a prototype of <inline-formula><tex-math notation=\"LaTeX\">${\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\"sans-serif\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\"zhao-ieq3-3349180.gif\"/></alternatives></inline-formula> in 11,560 lines of code, and extensively evaluate it on our testbed. The results show that <italic>a single instance of</italic> <italic><inline-formula><tex-math notation=\"LaTeX\">${\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\"sans-serif\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\"zhao-ieq4-3349180.gif\"/></alternatives></inline-formula></italic> can forward 99.93% of victim-desired traffic when facing previously unseen attacks, while imposing less than 0.1% forwarding overhead on a dataplane with 80 Gbps upstream links and a 40 Gbps bottleneck.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effective DDoS Mitigation via ML-Driven In-Network Traffic Shaping\",\"authors\":\"Ziming Zhao, Zhuotao Liu, Huan Chen, Fan Zhang, Zhu Song, Zhaoxuan Li\",\"doi\":\"10.1109/TDSC.2023.3349180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defending against Distributed Denial of Service (DDoS) attacks is a fundamental problem in the Internet. Over the past few decades, the research and industry communities have proposed a variety of solutions, from adding incremental capabilities to the existing Internet routing stack, to clean-slate future Internet architectures, and to widely deployed commercial DDoS prevention services. Yet a recent interview with over 100 security practitioners in multiple sectors reveals that existing solutions are <italic>still insufficient against</italic>, due to either unenforceable protocol deployment or non-comprehensive traffic filters. This seemingly endless arms race with attackers probably means that we need a fundamental paradigm shift. In this paper, we propose a new DDoS prevention paradigm named <italic>preference-driven and in-network enforced traffic shaping</italic>, aiming to explore the novel DDoS prevention norms that focus on delivering victim-preferred traffic rather than consistently chasing after the DDoS attacks. Towards this end, we propose <inline-formula><tex-math notation=\\\"LaTeX\\\">${\\\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\\\"sans-serif\\\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\\\"zhao-ieq1-3349180.gif\\\"/></alternatives></inline-formula>, a novel DDoS prevention system that provides reliable delivery of victim-preferred traffic <italic>without</italic> full knowledge of DDoS attacks. At a very high level, the core innovative design of <inline-formula><tex-math notation=\\\"LaTeX\\\">${\\\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\\\"sans-serif\\\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\\\"zhao-ieq2-3349180.gif\\\"/></alternatives></inline-formula> embraces the advances in Machine Learning (ML) and new network dataplane primitives, by <italic>encoding</italic> the victim’s traffic preference (in the form of complex ML models) into dataplane packet scheduling algorithms such that the victim-preferred traffic is forwarded with priority at line-speed, regardless of the attacker strategy. We implement a prototype of <inline-formula><tex-math notation=\\\"LaTeX\\\">${\\\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\\\"sans-serif\\\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\\\"zhao-ieq3-3349180.gif\\\"/></alternatives></inline-formula> in 11,560 lines of code, and extensively evaluate it on our testbed. The results show that <italic>a single instance of</italic> <italic><inline-formula><tex-math notation=\\\"LaTeX\\\">${\\\\sf DFNet}$</tex-math><alternatives><mml:math><mml:mi mathvariant=\\\"sans-serif\\\">DFNet</mml:mi></mml:math><inline-graphic xlink:href=\\\"zhao-ieq4-3349180.gif\\\"/></alternatives></inline-formula></italic> can forward 99.93% of victim-desired traffic when facing previously unseen attacks, while imposing less than 0.1% forwarding overhead on a dataplane with 80 Gbps upstream links and a 40 Gbps bottleneck.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2023.3349180\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2023.3349180","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Effective DDoS Mitigation via ML-Driven In-Network Traffic Shaping
Defending against Distributed Denial of Service (DDoS) attacks is a fundamental problem in the Internet. Over the past few decades, the research and industry communities have proposed a variety of solutions, from adding incremental capabilities to the existing Internet routing stack, to clean-slate future Internet architectures, and to widely deployed commercial DDoS prevention services. Yet a recent interview with over 100 security practitioners in multiple sectors reveals that existing solutions are still insufficient against, due to either unenforceable protocol deployment or non-comprehensive traffic filters. This seemingly endless arms race with attackers probably means that we need a fundamental paradigm shift. In this paper, we propose a new DDoS prevention paradigm named preference-driven and in-network enforced traffic shaping, aiming to explore the novel DDoS prevention norms that focus on delivering victim-preferred traffic rather than consistently chasing after the DDoS attacks. Towards this end, we propose ${\sf DFNet}$DFNet, a novel DDoS prevention system that provides reliable delivery of victim-preferred traffic without full knowledge of DDoS attacks. At a very high level, the core innovative design of ${\sf DFNet}$DFNet embraces the advances in Machine Learning (ML) and new network dataplane primitives, by encoding the victim’s traffic preference (in the form of complex ML models) into dataplane packet scheduling algorithms such that the victim-preferred traffic is forwarded with priority at line-speed, regardless of the attacker strategy. We implement a prototype of ${\sf DFNet}$DFNet in 11,560 lines of code, and extensively evaluate it on our testbed. The results show that a single instance of${\sf DFNet}$DFNet can forward 99.93% of victim-desired traffic when facing previously unseen attacks, while imposing less than 0.1% forwarding overhead on a dataplane with 80 Gbps upstream links and a 40 Gbps bottleneck.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.