Li He, Lingfeng He, Zezheng Lin, Yao Lu, Chen Chen, Zhongmin Wang, Ping An, Min Liu, Jie Xu, Shurui Gao
{"title":"利用对社会阶层和公民身份的精细测量感知 PM2.5 暴露的环境不平等现象","authors":"Li He, Lingfeng He, Zezheng Lin, Yao Lu, Chen Chen, Zhongmin Wang, Ping An, Min Liu, Jie Xu, Shurui Gao","doi":"10.3390/ijgi13070257","DOIUrl":null,"url":null,"abstract":"Exposure to PM2.5 pollution poses substantial health risks, with the precise quantification of exposure being fundamental to understanding the environmental inequalities therein. However, the absence of high-resolution spatiotemporal ambient population data, coupled with an insufficiency of attribute data, impedes a comprehension of the environmental inequality of exposure risks at a fine scale. Within the purview of a conceptual framework that interlinks social strata and citizenship identity with environmental inequality, this study examines the environmental inequality of PM2.5 exposure with a focus on the city of Xi’an. Quantitative metrics of the social strata and citizenship identities of the ambient population are derived from housing price data and mobile phone big data. The fine-scale estimation of PM2.5 concentrations is predicated on the kriging interpolation method and refined by leveraging an advanced dataset. Employing geographically weighted regression models, we examine the environmental inequality pattern at a fine spatial scale. The key findings are threefold: (1) the manifestation of environmental inequality in PM2.5 exposure is pronounced among individuals of varying social strata and citizenship identities within our study area, Xi’an; (2) nonlocal residents situated in the northwestern precincts of Xi’an are subject to the most pronounced PM2.5 exposure; and (3) an elevated socioeconomic status is identified as an attenuating factor, capable of averting the deleterious impacts of PM2.5 exposure among nonlocal residents. These findings proffer substantial practical implications for the orchestration of air pollution mitigation strategies and urban planning initiatives. They suggest that addressing the wellbeing of the marginalized underprivileged cohorts, who are environmentally and politically segregated under the extant urban planning policies in China, is of critical importance.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"37 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensing the Environmental Inequality of PM2.5 Exposure Using Fine-Scale Measurements of Social Strata and Citizenship Identity\",\"authors\":\"Li He, Lingfeng He, Zezheng Lin, Yao Lu, Chen Chen, Zhongmin Wang, Ping An, Min Liu, Jie Xu, Shurui Gao\",\"doi\":\"10.3390/ijgi13070257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exposure to PM2.5 pollution poses substantial health risks, with the precise quantification of exposure being fundamental to understanding the environmental inequalities therein. However, the absence of high-resolution spatiotemporal ambient population data, coupled with an insufficiency of attribute data, impedes a comprehension of the environmental inequality of exposure risks at a fine scale. Within the purview of a conceptual framework that interlinks social strata and citizenship identity with environmental inequality, this study examines the environmental inequality of PM2.5 exposure with a focus on the city of Xi’an. Quantitative metrics of the social strata and citizenship identities of the ambient population are derived from housing price data and mobile phone big data. The fine-scale estimation of PM2.5 concentrations is predicated on the kriging interpolation method and refined by leveraging an advanced dataset. Employing geographically weighted regression models, we examine the environmental inequality pattern at a fine spatial scale. The key findings are threefold: (1) the manifestation of environmental inequality in PM2.5 exposure is pronounced among individuals of varying social strata and citizenship identities within our study area, Xi’an; (2) nonlocal residents situated in the northwestern precincts of Xi’an are subject to the most pronounced PM2.5 exposure; and (3) an elevated socioeconomic status is identified as an attenuating factor, capable of averting the deleterious impacts of PM2.5 exposure among nonlocal residents. These findings proffer substantial practical implications for the orchestration of air pollution mitigation strategies and urban planning initiatives. They suggest that addressing the wellbeing of the marginalized underprivileged cohorts, who are environmentally and politically segregated under the extant urban planning policies in China, is of critical importance.\",\"PeriodicalId\":48738,\"journal\":{\"name\":\"ISPRS International Journal of Geo-Information\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS International Journal of Geo-Information\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13070257\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13070257","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Sensing the Environmental Inequality of PM2.5 Exposure Using Fine-Scale Measurements of Social Strata and Citizenship Identity
Exposure to PM2.5 pollution poses substantial health risks, with the precise quantification of exposure being fundamental to understanding the environmental inequalities therein. However, the absence of high-resolution spatiotemporal ambient population data, coupled with an insufficiency of attribute data, impedes a comprehension of the environmental inequality of exposure risks at a fine scale. Within the purview of a conceptual framework that interlinks social strata and citizenship identity with environmental inequality, this study examines the environmental inequality of PM2.5 exposure with a focus on the city of Xi’an. Quantitative metrics of the social strata and citizenship identities of the ambient population are derived from housing price data and mobile phone big data. The fine-scale estimation of PM2.5 concentrations is predicated on the kriging interpolation method and refined by leveraging an advanced dataset. Employing geographically weighted regression models, we examine the environmental inequality pattern at a fine spatial scale. The key findings are threefold: (1) the manifestation of environmental inequality in PM2.5 exposure is pronounced among individuals of varying social strata and citizenship identities within our study area, Xi’an; (2) nonlocal residents situated in the northwestern precincts of Xi’an are subject to the most pronounced PM2.5 exposure; and (3) an elevated socioeconomic status is identified as an attenuating factor, capable of averting the deleterious impacts of PM2.5 exposure among nonlocal residents. These findings proffer substantial practical implications for the orchestration of air pollution mitigation strategies and urban planning initiatives. They suggest that addressing the wellbeing of the marginalized underprivileged cohorts, who are environmentally and politically segregated under the extant urban planning policies in China, is of critical importance.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.