针对非凸优化问题的干摩擦和非单调线性搜索快速梯度算法

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-07-17 DOI:10.1137/22m1532354
Lien T. Nguyen, Andrew Eberhard, Xinghuo Yu, Chaojie Li
{"title":"针对非凸优化问题的干摩擦和非单调线性搜索快速梯度算法","authors":"Lien T. Nguyen, Andrew Eberhard, Xinghuo Yu, Chaojie Li","doi":"10.1137/22m1532354","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2557-2587, September 2024. <br/> Abstract. In this paper, we propose a fast gradient algorithm for the problem of minimizing a differentiable (possibly nonconvex) function in Hilbert spaces. We first extend the dry friction property for convex functions to what we call the dry-like friction property in a nonconvex setting, and then employ a line search technique to adaptively update parameters at each iteration. Depending on the choice of parameters, the proposed algorithm exhibits subsequential convergence to a critical point or full sequential convergence to an “approximate” critical point of the objective function. We also establish the full sequential convergence to a critical point under the Kurdyka–Łojasiewicz (KL) property of a merit function. Thanks to the parameters’ flexibility, our algorithm can reduce to a number of existing inertial gradient algorithms with Hessian damping and dry friction. By exploiting variational properties of the Moreau envelope, the proposed algorithm is adapted to address weakly convex nonsmooth optimization problems. In particular, we extend the result on KL exponent for the Moreau envelope of a convex KL function to a broad class of KL functions that are not necessarily convex nor continuous. Simulation results illustrate the efficiency of our algorithm and demonstrate the potential advantages of combining dry-like friction with extrapolation and line search techniques.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Gradient Algorithm with Dry-like Friction and Nonmonotone Line Search for Nonconvex Optimization Problems\",\"authors\":\"Lien T. Nguyen, Andrew Eberhard, Xinghuo Yu, Chaojie Li\",\"doi\":\"10.1137/22m1532354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2557-2587, September 2024. <br/> Abstract. In this paper, we propose a fast gradient algorithm for the problem of minimizing a differentiable (possibly nonconvex) function in Hilbert spaces. We first extend the dry friction property for convex functions to what we call the dry-like friction property in a nonconvex setting, and then employ a line search technique to adaptively update parameters at each iteration. Depending on the choice of parameters, the proposed algorithm exhibits subsequential convergence to a critical point or full sequential convergence to an “approximate” critical point of the objective function. We also establish the full sequential convergence to a critical point under the Kurdyka–Łojasiewicz (KL) property of a merit function. Thanks to the parameters’ flexibility, our algorithm can reduce to a number of existing inertial gradient algorithms with Hessian damping and dry friction. By exploiting variational properties of the Moreau envelope, the proposed algorithm is adapted to address weakly convex nonsmooth optimization problems. In particular, we extend the result on KL exponent for the Moreau envelope of a convex KL function to a broad class of KL functions that are not necessarily convex nor continuous. Simulation results illustrate the efficiency of our algorithm and demonstrate the potential advantages of combining dry-like friction with extrapolation and line search techniques.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1532354\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1532354","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》,第 34 卷第 3 期,第 2557-2587 页,2024 年 9 月。 摘要本文针对在希尔伯特空间中最小化可微(可能是非凸)函数的问题提出了一种快速梯度算法。我们首先将凸函数的干摩擦特性扩展为非凸环境下的类干摩擦特性,然后采用直线搜索技术在每次迭代时自适应地更新参数。根据参数的选择,所提出的算法表现出向临界点的后续收敛或向目标函数 "近似 "临界点的完全顺序收敛。我们还根据绩函数的 Kurdyka-Łojasiewicz (KL) 特性建立了向临界点的全序列收敛。得益于参数的灵活性,我们的算法可以简化为许多现有的带有黑森阻尼和干摩擦的惯性梯度算法。通过利用莫罗包络的变分特性,我们提出的算法可用于解决弱凸非光滑优化问题。特别是,我们将凸 KL 函数莫劳包络的 KL 指数结果扩展到了不一定是凸的也不一定是连续的一大类 KL 函数。仿真结果表明了我们算法的效率,并证明了类干摩擦与外推法和直线搜索技术相结合的潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Gradient Algorithm with Dry-like Friction and Nonmonotone Line Search for Nonconvex Optimization Problems
SIAM Journal on Optimization, Volume 34, Issue 3, Page 2557-2587, September 2024.
Abstract. In this paper, we propose a fast gradient algorithm for the problem of minimizing a differentiable (possibly nonconvex) function in Hilbert spaces. We first extend the dry friction property for convex functions to what we call the dry-like friction property in a nonconvex setting, and then employ a line search technique to adaptively update parameters at each iteration. Depending on the choice of parameters, the proposed algorithm exhibits subsequential convergence to a critical point or full sequential convergence to an “approximate” critical point of the objective function. We also establish the full sequential convergence to a critical point under the Kurdyka–Łojasiewicz (KL) property of a merit function. Thanks to the parameters’ flexibility, our algorithm can reduce to a number of existing inertial gradient algorithms with Hessian damping and dry friction. By exploiting variational properties of the Moreau envelope, the proposed algorithm is adapted to address weakly convex nonsmooth optimization problems. In particular, we extend the result on KL exponent for the Moreau envelope of a convex KL function to a broad class of KL functions that are not necessarily convex nor continuous. Simulation results illustrate the efficiency of our algorithm and demonstrate the potential advantages of combining dry-like friction with extrapolation and line search techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1