Meng Zhang, Maosheng Xiang, Yuan-Sen Ting, Jiahui Wang, Haining Li, Hu Zou, Jundan Nie, Lanya Mou, Tianmin Wu, Yaqian Wu and Jifeng Liu
{"title":"利用数据驱动佩恩从 DESI 光谱确定恒星元素丰度","authors":"Meng Zhang, Maosheng Xiang, Yuan-Sen Ting, Jiahui Wang, Haining Li, Hu Zou, Jundan Nie, Lanya Mou, Tianmin Wu, Yaqian Wu and Jifeng Liu","doi":"10.3847/1538-4365/ad51dd","DOIUrl":null,"url":null,"abstract":"Stellar abundances for a large number of stars provide key information for the study of Galactic formation history. Large spectroscopic surveys such as the Dark Energy Spectroscopic Instrument (DESI) and LAMOST take median-to-low-resolution (R ≲ 5000) spectra in the full optical wavelength range for millions of stars. However, the line-blending effect in these spectra causes great challenges for elemental abundance determination. Here we employ DD-Payne, a data-driven method regularized by differential spectra from stellar physical models, to the DESI early data release spectra for stellar abundance determination. Our implementation delivers 15 labels, including effective temperature Teff, surface gravity , microturbulence velocity vmic, and the abundances for 12 individual elements, namely C, N, O, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, and Ni. Given a spectral signal-to-noise ratio of 100 per pixel, the internal precisions of the label estimates are about 20 K for Teff, 0.05 dex for , and 0.05 dex for most elemental abundances. These results agree with the theoretical limits from the Crámer–Rao bound calculation within a factor of 2. The majority of the accreted halo stars contributed by the Gaia–Enceladus–Sausage are discernible from the disk and in situ halo populations in the resultant [Mg/Fe]–[Fe/H] and [Al/Fe]–[Fe/H] abundance spaces. We also provide distance and orbital parameters for the sample stars, which spread over a distance out to ∼100 kpc. The DESI sample has a significantly higher fraction of distant (or metal-poor) stars than the other existing spectroscopic surveys, making it a powerful data set for studying the Galactic outskirts. The catalog is publicly available.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining Stellar Elemental Abundances from DESI Spectra with the Data-driven Payne\",\"authors\":\"Meng Zhang, Maosheng Xiang, Yuan-Sen Ting, Jiahui Wang, Haining Li, Hu Zou, Jundan Nie, Lanya Mou, Tianmin Wu, Yaqian Wu and Jifeng Liu\",\"doi\":\"10.3847/1538-4365/ad51dd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stellar abundances for a large number of stars provide key information for the study of Galactic formation history. Large spectroscopic surveys such as the Dark Energy Spectroscopic Instrument (DESI) and LAMOST take median-to-low-resolution (R ≲ 5000) spectra in the full optical wavelength range for millions of stars. However, the line-blending effect in these spectra causes great challenges for elemental abundance determination. Here we employ DD-Payne, a data-driven method regularized by differential spectra from stellar physical models, to the DESI early data release spectra for stellar abundance determination. Our implementation delivers 15 labels, including effective temperature Teff, surface gravity , microturbulence velocity vmic, and the abundances for 12 individual elements, namely C, N, O, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, and Ni. Given a spectral signal-to-noise ratio of 100 per pixel, the internal precisions of the label estimates are about 20 K for Teff, 0.05 dex for , and 0.05 dex for most elemental abundances. These results agree with the theoretical limits from the Crámer–Rao bound calculation within a factor of 2. The majority of the accreted halo stars contributed by the Gaia–Enceladus–Sausage are discernible from the disk and in situ halo populations in the resultant [Mg/Fe]–[Fe/H] and [Al/Fe]–[Fe/H] abundance spaces. We also provide distance and orbital parameters for the sample stars, which spread over a distance out to ∼100 kpc. The DESI sample has a significantly higher fraction of distant (or metal-poor) stars than the other existing spectroscopic surveys, making it a powerful data set for studying the Galactic outskirts. The catalog is publicly available.\",\"PeriodicalId\":22368,\"journal\":{\"name\":\"The Astrophysical Journal Supplement Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/ad51dd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad51dd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Determining Stellar Elemental Abundances from DESI Spectra with the Data-driven Payne
Stellar abundances for a large number of stars provide key information for the study of Galactic formation history. Large spectroscopic surveys such as the Dark Energy Spectroscopic Instrument (DESI) and LAMOST take median-to-low-resolution (R ≲ 5000) spectra in the full optical wavelength range for millions of stars. However, the line-blending effect in these spectra causes great challenges for elemental abundance determination. Here we employ DD-Payne, a data-driven method regularized by differential spectra from stellar physical models, to the DESI early data release spectra for stellar abundance determination. Our implementation delivers 15 labels, including effective temperature Teff, surface gravity , microturbulence velocity vmic, and the abundances for 12 individual elements, namely C, N, O, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, and Ni. Given a spectral signal-to-noise ratio of 100 per pixel, the internal precisions of the label estimates are about 20 K for Teff, 0.05 dex for , and 0.05 dex for most elemental abundances. These results agree with the theoretical limits from the Crámer–Rao bound calculation within a factor of 2. The majority of the accreted halo stars contributed by the Gaia–Enceladus–Sausage are discernible from the disk and in situ halo populations in the resultant [Mg/Fe]–[Fe/H] and [Al/Fe]–[Fe/H] abundance spaces. We also provide distance and orbital parameters for the sample stars, which spread over a distance out to ∼100 kpc. The DESI sample has a significantly higher fraction of distant (or metal-poor) stars than the other existing spectroscopic surveys, making it a powerful data set for studying the Galactic outskirts. The catalog is publicly available.