通过标签合并树交错距离计算几何图的距离

Erin Wolf Chambers, Elizabeth Munch, Sarah Percival, Xinyi Wang
{"title":"通过标签合并树交错距离计算几何图的距离","authors":"Erin Wolf Chambers, Elizabeth Munch, Sarah Percival, Xinyi Wang","doi":"arxiv-2407.09442","DOIUrl":null,"url":null,"abstract":"Geometric graphs appear in many real-world data sets, such as road networks,\nsensor networks, and molecules. We investigate the notion of distance between\nembedded graphs and present a metric to measure the distance between two\ngeometric graphs via merge trees. In order to preserve as much useful\ninformation as possible from the original data, we introduce a way of rotating\nthe sublevel set to obtain the merge trees via the idea of the directional\ntransform. We represent the merge trees using a surjective multi-labeling\nscheme and then compute the distance between two representative matrices. We\nshow some theoretically desirable qualities and present two methods of\ncomputation: approximation via sampling and exact distance using a kinetic data\nstructure, both in polynomial time. We illustrate its utility by implementing\nit on two data sets.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Distance for Geometric Graphs via the Labeled Merge Tree Interleaving Distance\",\"authors\":\"Erin Wolf Chambers, Elizabeth Munch, Sarah Percival, Xinyi Wang\",\"doi\":\"arxiv-2407.09442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geometric graphs appear in many real-world data sets, such as road networks,\\nsensor networks, and molecules. We investigate the notion of distance between\\nembedded graphs and present a metric to measure the distance between two\\ngeometric graphs via merge trees. In order to preserve as much useful\\ninformation as possible from the original data, we introduce a way of rotating\\nthe sublevel set to obtain the merge trees via the idea of the directional\\ntransform. We represent the merge trees using a surjective multi-labeling\\nscheme and then compute the distance between two representative matrices. We\\nshow some theoretically desirable qualities and present two methods of\\ncomputation: approximation via sampling and exact distance using a kinetic data\\nstructure, both in polynomial time. We illustrate its utility by implementing\\nit on two data sets.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.09442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几何图出现在许多现实世界的数据集中,如道路网络、传感器网络和分子。我们研究了嵌入图之间的距离概念,并提出了一种通过合并树测量两个几何图形之间距离的度量方法。为了尽可能多地保留原始数据中的有用信息,我们引入了一种旋转子级集的方法,通过方向变换的思想获得合并树。我们使用一种投射式多标记方案来表示合并树,然后计算两个代表性矩阵之间的距离。我们展示了一些理论上理想的品质,并介绍了两种计算方法:通过采样的近似方法和使用动力学数据结构的精确距离方法,这两种方法都可以在多项式时间内完成。我们在两个数据集上实现了这种方法,从而说明了它的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Distance for Geometric Graphs via the Labeled Merge Tree Interleaving Distance
Geometric graphs appear in many real-world data sets, such as road networks, sensor networks, and molecules. We investigate the notion of distance between embedded graphs and present a metric to measure the distance between two geometric graphs via merge trees. In order to preserve as much useful information as possible from the original data, we introduce a way of rotating the sublevel set to obtain the merge trees via the idea of the directional transform. We represent the merge trees using a surjective multi-labeling scheme and then compute the distance between two representative matrices. We show some theoretically desirable qualities and present two methods of computation: approximation via sampling and exact distance using a kinetic data structure, both in polynomial time. We illustrate its utility by implementing it on two data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Residual functions and divisorial ideals On Divisor Topology of Commutative Rings On Golomb Topology of Modules over Commutative Rings Two Selection Theorems for Extremally Disconnected Spaces Lipschitz vector spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1