Swagato Mukherjee, Dennis Bollweg, Xiang Gao, Yong Zhao
{"title":"非微扰柯林斯-索珀内核:手性夸克与库仑定律固定准 TMD","authors":"Swagato Mukherjee, Dennis Bollweg, Xiang Gao, Yong Zhao","doi":"arxiv-2407.10739","DOIUrl":null,"url":null,"abstract":"We present the first lattice QCD calculation of the rapidity anomalous\ndimension of transverse-momentum-dependent distributions (TMDs), i.e. the\nCollins-Soper (CS) kernel, employing the recently proposed Coulomb-gauge-fixed\nquasi-TMD formalism as well as a chiral-symmetry preserving lattice\ndiscretization. This unitary lattice calculation is conducted using the domain\nwall fermion discretization scheme, a fine lattice spacing of approximately\n0.08 fm, and physical values for light and strange quark masses. The CS kernel\nis determined analyzing the ratios of pion quasi-TMD wave functions\n(quasi-TMDWFs) at next-to-leading logarithmic (NLL) perturbative accuracy.\nThanks to the absence of Wilson-lines, the Coulomb-gauge-fixed quasi-TMDWF\ndemonstrates a remarkably slower decay of signals with increasing quark\nseparations. This allows us to access the non-perturbative CS kernel up to\ntransverse separations of 1 fm. For small transverse separations, our results\nagree well with perturbative predictions. At larger transverse separations, our\nnon-perturbative CS kernel clearly favors certain global fits.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-perturbative Collins-Soper kernel: Chiral quarks and Coulomb-gauge-fixed quasi-TMD\",\"authors\":\"Swagato Mukherjee, Dennis Bollweg, Xiang Gao, Yong Zhao\",\"doi\":\"arxiv-2407.10739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first lattice QCD calculation of the rapidity anomalous\\ndimension of transverse-momentum-dependent distributions (TMDs), i.e. the\\nCollins-Soper (CS) kernel, employing the recently proposed Coulomb-gauge-fixed\\nquasi-TMD formalism as well as a chiral-symmetry preserving lattice\\ndiscretization. This unitary lattice calculation is conducted using the domain\\nwall fermion discretization scheme, a fine lattice spacing of approximately\\n0.08 fm, and physical values for light and strange quark masses. The CS kernel\\nis determined analyzing the ratios of pion quasi-TMD wave functions\\n(quasi-TMDWFs) at next-to-leading logarithmic (NLL) perturbative accuracy.\\nThanks to the absence of Wilson-lines, the Coulomb-gauge-fixed quasi-TMDWF\\ndemonstrates a remarkably slower decay of signals with increasing quark\\nseparations. This allows us to access the non-perturbative CS kernel up to\\ntransverse separations of 1 fm. For small transverse separations, our results\\nagree well with perturbative predictions. At larger transverse separations, our\\nnon-perturbative CS kernel clearly favors certain global fits.\",\"PeriodicalId\":501191,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们采用最近提出的库仑-量规-固定准TMD形式主义以及保持手性对称的晶格离散化,首次提出了横向动量相关分布(TMDs)(即柯林斯-索珀(CS)核)的快速性反常尺寸的晶格QCD计算。这种单元晶格计算采用域墙费米子离散化方案、约 0.08 fm 的精细晶格间距以及轻夸克和奇异夸克质量的物理值。由于不存在威尔逊线,库仑定律固定的准TMDWF显示出随着夸克间隔的增加,信号的衰减速度明显减慢。这使我们能够获得横向间隔达 1 fm 的非微扰 CS 核。对于较小的横向间隔,我们的结果与微扰预测一致。在较大的横向间隔下,我们的非微扰CS核明显倾向于某些全局拟合。
Non-perturbative Collins-Soper kernel: Chiral quarks and Coulomb-gauge-fixed quasi-TMD
We present the first lattice QCD calculation of the rapidity anomalous
dimension of transverse-momentum-dependent distributions (TMDs), i.e. the
Collins-Soper (CS) kernel, employing the recently proposed Coulomb-gauge-fixed
quasi-TMD formalism as well as a chiral-symmetry preserving lattice
discretization. This unitary lattice calculation is conducted using the domain
wall fermion discretization scheme, a fine lattice spacing of approximately
0.08 fm, and physical values for light and strange quark masses. The CS kernel
is determined analyzing the ratios of pion quasi-TMD wave functions
(quasi-TMDWFs) at next-to-leading logarithmic (NLL) perturbative accuracy.
Thanks to the absence of Wilson-lines, the Coulomb-gauge-fixed quasi-TMDWF
demonstrates a remarkably slower decay of signals with increasing quark
separations. This allows us to access the non-perturbative CS kernel up to
transverse separations of 1 fm. For small transverse separations, our results
agree well with perturbative predictions. At larger transverse separations, our
non-perturbative CS kernel clearly favors certain global fits.