网格大小、湍流参数化和地表交换方案对百米山脉山地边界层模拟的影响

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Quarterly Journal of the Royal Meteorological Society Pub Date : 2024-07-15 DOI:10.1002/qj.4799
Brigitta Goger, Anurag Dipankar
{"title":"网格大小、湍流参数化和地表交换方案对百米山脉山地边界层模拟的影响","authors":"Brigitta Goger, Anurag Dipankar","doi":"10.1002/qj.4799","DOIUrl":null,"url":null,"abstract":"The horizontal grid spacing of numerical weather prediction models keeps decreasing towards the hectometric range. We perform limited‐area simulations with the Icosahedral Nonhydrostatic (ICON) model across horizontal grid spacings (1 km, 500 m, 250 m, 125 m) in the Inn Valley, Austria, and evaluate the model with observations from the Cross‐Valley Flow in the Inn Valley Investigated by Dual‐Doppler LIDAR Measurements (CROSSINN) measurement campaign. This allows us to investigate whether increasing the horizontal resolution automatically improves the representation of the flow structure, surface exchange, and common meteorological variables. Increasing the horizontal resolution results in an improved simulation of the thermally induced circulation. However, the model still faces challenges with scale interactions and the evening transition of the up‐valley flow. Differences between two turbulence schemes (1D turbulence kinetic energy (TKE) and 3D Smagorinsky) emerge due to their different surface transfer formulations, yielding a delayed evening transition in the 3D Smagorinsky scheme. Generally speaking, the correct simulation of the mountain boundary layer depends mostly on the representation of model topography and surface exchange, and the choice of turbulence parameterization is secondary.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of mesh size, turbulence parameterization, and land‐surface‐exchange scheme on simulations of the mountain boundary layer in the hectometric range\",\"authors\":\"Brigitta Goger, Anurag Dipankar\",\"doi\":\"10.1002/qj.4799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The horizontal grid spacing of numerical weather prediction models keeps decreasing towards the hectometric range. We perform limited‐area simulations with the Icosahedral Nonhydrostatic (ICON) model across horizontal grid spacings (1 km, 500 m, 250 m, 125 m) in the Inn Valley, Austria, and evaluate the model with observations from the Cross‐Valley Flow in the Inn Valley Investigated by Dual‐Doppler LIDAR Measurements (CROSSINN) measurement campaign. This allows us to investigate whether increasing the horizontal resolution automatically improves the representation of the flow structure, surface exchange, and common meteorological variables. Increasing the horizontal resolution results in an improved simulation of the thermally induced circulation. However, the model still faces challenges with scale interactions and the evening transition of the up‐valley flow. Differences between two turbulence schemes (1D turbulence kinetic energy (TKE) and 3D Smagorinsky) emerge due to their different surface transfer formulations, yielding a delayed evening transition in the 3D Smagorinsky scheme. Generally speaking, the correct simulation of the mountain boundary layer depends mostly on the representation of model topography and surface exchange, and the choice of turbulence parameterization is secondary.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4799\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4799","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

数值天气预报模式的水平网格间距不断向公顷范围缩小。我们利用二十面体非静水模型(ICON)在奥地利因山谷的水平网格间距(1 千米、500 米、250 米、125 米)进行了有限区域模拟,并利用因山谷跨谷流双多普勒激光雷达测量(CROSSINN)活动的观测数据对模型进行了评估。这使我们能够研究提高水平分辨率是否会自动改善对流动结构、地表交换和常见气象变量的表示。提高水平分辨率可改善对热诱导环流的模拟。然而,该模式仍然面临尺度相互作用和上谷流晚间过渡的挑战。两种湍流方案(一维湍流动能(TKE)和三维 Smagorinsky)之间的差异是由于它们不同的表面传输公式造成的,导致三维 Smagorinsky 方案中的黄昏过渡延迟。一般来说,山地边界层的正确模拟主要取决于模型地形和表面交换的表示,湍流参数化的选择是次要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The impact of mesh size, turbulence parameterization, and land‐surface‐exchange scheme on simulations of the mountain boundary layer in the hectometric range
The horizontal grid spacing of numerical weather prediction models keeps decreasing towards the hectometric range. We perform limited‐area simulations with the Icosahedral Nonhydrostatic (ICON) model across horizontal grid spacings (1 km, 500 m, 250 m, 125 m) in the Inn Valley, Austria, and evaluate the model with observations from the Cross‐Valley Flow in the Inn Valley Investigated by Dual‐Doppler LIDAR Measurements (CROSSINN) measurement campaign. This allows us to investigate whether increasing the horizontal resolution automatically improves the representation of the flow structure, surface exchange, and common meteorological variables. Increasing the horizontal resolution results in an improved simulation of the thermally induced circulation. However, the model still faces challenges with scale interactions and the evening transition of the up‐valley flow. Differences between two turbulence schemes (1D turbulence kinetic energy (TKE) and 3D Smagorinsky) emerge due to their different surface transfer formulations, yielding a delayed evening transition in the 3D Smagorinsky scheme. Generally speaking, the correct simulation of the mountain boundary layer depends mostly on the representation of model topography and surface exchange, and the choice of turbulence parameterization is secondary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
期刊最新文献
Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts Relationship between vertical variation of cloud microphysical properties and thickness of the entrainment interfacial layer in Physics of Stratocumulus Top stratocumulus clouds Characteristics and trends of Atlantic tropical cyclones that do and do not develop from African easterly waves Teleconnection and the Antarctic response to the Indian Ocean Dipole in CMIP5 and CMIP6 models First trial for the assimilation of radiance data from MTVZA‐GY on board the new Russian satellite meteor‐M N2‐2 in the CMA‐GFS 4D‐VAR system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1