R. V. S. S. N. Ravikumar, B. R. Nemallapudi, S. Gundala, V. F. Markov, L. N. Maskaeva, A. V. Ishchenko, L. G. Skornyakov, A. V. Chukin, I. S. Kovalev, G. V. Zyryanov
{"title":"与过渡金属氧化物合金化的超细 ZnS-ZnO 粉末的成分、形态和结构","authors":"R. V. S. S. N. Ravikumar, B. R. Nemallapudi, S. Gundala, V. F. Markov, L. N. Maskaeva, A. V. Ishchenko, L. G. Skornyakov, A. V. Chukin, I. S. Kovalev, G. V. Zyryanov","doi":"10.1134/s0031918x24600143","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—Ultrafine ZnO–ZnS powder with <i>d</i>-metal oxide additions, namely, V<sub>2</sub>O<sub>5</sub>, MnO, Fe<sub>2</sub>O<sub>3</sub>, CoO, NiO, and CuO are studied. The alloying of the ZnO–ZnS system with <i>d</i> metals changes the morphology of the synthesized powders. The particle size distribution obeys a lognormal law. An addition of <i>d</i> metal oxide upon the synthesis of ZnO–ZnS composite shifts the maximum of the particle-size distribution to the larger sizes. The more probable particle size in the samples alloyed with iron and cobalt (530 nm) exceeds that of unalloyed samples (320 nm) by more than 1.6 times. All the synthesized samples are found to be characterized by excess oxygen. The zinc, sulfur, and oxygen contents in the unalloyed ZnO–ZnS compositions is 48.0, 12.8, and 39.2 at %, respectively. The synthesis of the ZnO–ZnS composition together with transition metal oxides does not change the hexagonal and cubic symmetry of zinc sulfide and hexagonal symmetry of the zinc oxide. The presence of iron leads to an increase in the coherent domain size of the ZnS phase.</p>","PeriodicalId":20180,"journal":{"name":"Physics of Metals and Metallography","volume":"33 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition, Morphology, and Structure of Ultrafine ZnS–ZnO Powders Alloyed with Transition Metal Oxides\",\"authors\":\"R. V. S. S. N. Ravikumar, B. R. Nemallapudi, S. Gundala, V. F. Markov, L. N. Maskaeva, A. V. Ishchenko, L. G. Skornyakov, A. V. Chukin, I. S. Kovalev, G. V. Zyryanov\",\"doi\":\"10.1134/s0031918x24600143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—Ultrafine ZnO–ZnS powder with <i>d</i>-metal oxide additions, namely, V<sub>2</sub>O<sub>5</sub>, MnO, Fe<sub>2</sub>O<sub>3</sub>, CoO, NiO, and CuO are studied. The alloying of the ZnO–ZnS system with <i>d</i> metals changes the morphology of the synthesized powders. The particle size distribution obeys a lognormal law. An addition of <i>d</i> metal oxide upon the synthesis of ZnO–ZnS composite shifts the maximum of the particle-size distribution to the larger sizes. The more probable particle size in the samples alloyed with iron and cobalt (530 nm) exceeds that of unalloyed samples (320 nm) by more than 1.6 times. All the synthesized samples are found to be characterized by excess oxygen. The zinc, sulfur, and oxygen contents in the unalloyed ZnO–ZnS compositions is 48.0, 12.8, and 39.2 at %, respectively. The synthesis of the ZnO–ZnS composition together with transition metal oxides does not change the hexagonal and cubic symmetry of zinc sulfide and hexagonal symmetry of the zinc oxide. The presence of iron leads to an increase in the coherent domain size of the ZnS phase.</p>\",\"PeriodicalId\":20180,\"journal\":{\"name\":\"Physics of Metals and Metallography\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Metals and Metallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1134/s0031918x24600143\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Metals and Metallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1134/s0031918x24600143","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
摘要 研究了添加了 d 种金属氧化物(即 V2O5、MnO、Fe2O3、CoO、NiO 和 CuO)的超细 ZnO-ZnS 粉末。ZnO-ZnS 系统与 d 种金属的合金化改变了合成粉末的形态。粒度分布服从对数正态分布规律。在合成 ZnO-ZnS 复合材料时加入 d 金属氧化物会使粒度分布的最大值向较大粒度移动。与铁和钴合金化的样品(530 nm)的粒度可能比未合金化的样品(320 nm)大 1.6 倍以上。所有合成样品都存在过量氧。非合金 ZnO-ZnS 成分中的锌、硫和氧含量分别为 48.0%、12.8% 和 39.2%。与过渡金属氧化物一起合成 ZnO-ZnS 成分不会改变硫化锌的六方和立方对称性以及氧化锌的六方对称性。铁的存在导致 ZnS 相的相干畴尺寸增大。
Composition, Morphology, and Structure of Ultrafine ZnS–ZnO Powders Alloyed with Transition Metal Oxides
Abstract—Ultrafine ZnO–ZnS powder with d-metal oxide additions, namely, V2O5, MnO, Fe2O3, CoO, NiO, and CuO are studied. The alloying of the ZnO–ZnS system with d metals changes the morphology of the synthesized powders. The particle size distribution obeys a lognormal law. An addition of d metal oxide upon the synthesis of ZnO–ZnS composite shifts the maximum of the particle-size distribution to the larger sizes. The more probable particle size in the samples alloyed with iron and cobalt (530 nm) exceeds that of unalloyed samples (320 nm) by more than 1.6 times. All the synthesized samples are found to be characterized by excess oxygen. The zinc, sulfur, and oxygen contents in the unalloyed ZnO–ZnS compositions is 48.0, 12.8, and 39.2 at %, respectively. The synthesis of the ZnO–ZnS composition together with transition metal oxides does not change the hexagonal and cubic symmetry of zinc sulfide and hexagonal symmetry of the zinc oxide. The presence of iron leads to an increase in the coherent domain size of the ZnS phase.
期刊介绍:
The Physics of Metals and Metallography (Fizika metallov i metallovedenie) was founded in 1955 by the USSR Academy of Sciences. Its scientific profile involves the theory of metals and metal alloys, their electrical and magnetic properties, as well as their structure, phase transformations, and principal mechanical properties. The journal also publishes scientific reviews and papers written by experts involved in fundamental, application, and technological studies. The annual volume of publications amounts to some 250 papers submitted from 100 leading national scientific institutions.