Lisa Eisele, Bletë Hulaj, Maximilian Podsednik, Francesco Laudani, Pablo Ayala, Alexey Cherevan, Annette Foelske, Andreas Limbeck, Dominik Eder and Katharina Bica-Schröder
{"title":"驱动光催化二氧化碳转化的聚合离子液体助催化剂","authors":"Lisa Eisele, Bletë Hulaj, Maximilian Podsednik, Francesco Laudani, Pablo Ayala, Alexey Cherevan, Annette Foelske, Andreas Limbeck, Dominik Eder and Katharina Bica-Schröder","doi":"10.1039/D4SU00194J","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic production of CO from CO<small><sub>2</sub></small> has the potential for safe and atom-economic production of feedstock chemicals <em>via in situ</em> carbonylation chemistry. We developed novel ionic liquid-based polymeric materials through radical copolymerisation of 1-butyl-3-vinylimidazolium chloride and photocatalytically active Re- and Ru-complexes that serve as the CO<small><sub>2</sub></small> reduction catalyst and photosensitiser, respectively. The crosslinked polymeric framework allows for the facile immobilisation of molecular organometallic complexes for use as heterogenised catalysts; moreover, the involved imidazolium core units co-catalyze the reduction of CO<small><sub>2</sub></small><em>via</em> covalent interaction. The ratio of sensitiser and catalyst was analysed by laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) and set in relation to results from photocatalytic experiments. Ultimately, the heterogenous polymeric framework showed high selectivity for CO formation on photocatalytic CO<small><sub>2</sub></small> reduction with improved stability to the corresponding homogenous system.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 9","pages":" 2524-2531"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00194j?page=search","citationCount":"0","resultStr":"{\"title\":\"Polymerized ionic liquid Co-catalysts driving photocatalytic CO2 transformation†\",\"authors\":\"Lisa Eisele, Bletë Hulaj, Maximilian Podsednik, Francesco Laudani, Pablo Ayala, Alexey Cherevan, Annette Foelske, Andreas Limbeck, Dominik Eder and Katharina Bica-Schröder\",\"doi\":\"10.1039/D4SU00194J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photocatalytic production of CO from CO<small><sub>2</sub></small> has the potential for safe and atom-economic production of feedstock chemicals <em>via in situ</em> carbonylation chemistry. We developed novel ionic liquid-based polymeric materials through radical copolymerisation of 1-butyl-3-vinylimidazolium chloride and photocatalytically active Re- and Ru-complexes that serve as the CO<small><sub>2</sub></small> reduction catalyst and photosensitiser, respectively. The crosslinked polymeric framework allows for the facile immobilisation of molecular organometallic complexes for use as heterogenised catalysts; moreover, the involved imidazolium core units co-catalyze the reduction of CO<small><sub>2</sub></small><em>via</em> covalent interaction. The ratio of sensitiser and catalyst was analysed by laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) and set in relation to results from photocatalytic experiments. Ultimately, the heterogenous polymeric framework showed high selectivity for CO formation on photocatalytic CO<small><sub>2</sub></small> reduction with improved stability to the corresponding homogenous system.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 9\",\"pages\":\" 2524-2531\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00194j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00194j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00194j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
通过原位羰基化化学,光催化从 CO2 生成 CO 有可能实现安全、原子经济的原料化学品生产。我们通过 1-丁基-3-乙烯基氯化咪唑与光催化活性 Re- 和 Ru-复合物的自由基共聚,开发出了新型离子液体基聚合物材料,可分别用作二氧化碳还原催化剂和光敏剂。交联聚合物框架可以方便地固定分子有机金属复合物,用作异质催化剂;此外,其中的咪唑核心单元通过共价作用共同催化二氧化碳还原。通过激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)分析了敏化剂和催化剂的比例,并根据光催化实验的结果进行了设定。最终,与相应的均质系统相比,异质聚合物框架在光催化二氧化碳还原过程中对一氧化碳的生成具有更高的选择性和更强的稳定性。
Polymerized ionic liquid Co-catalysts driving photocatalytic CO2 transformation†
Photocatalytic production of CO from CO2 has the potential for safe and atom-economic production of feedstock chemicals via in situ carbonylation chemistry. We developed novel ionic liquid-based polymeric materials through radical copolymerisation of 1-butyl-3-vinylimidazolium chloride and photocatalytically active Re- and Ru-complexes that serve as the CO2 reduction catalyst and photosensitiser, respectively. The crosslinked polymeric framework allows for the facile immobilisation of molecular organometallic complexes for use as heterogenised catalysts; moreover, the involved imidazolium core units co-catalyze the reduction of CO2via covalent interaction. The ratio of sensitiser and catalyst was analysed by laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) and set in relation to results from photocatalytic experiments. Ultimately, the heterogenous polymeric framework showed high selectivity for CO formation on photocatalytic CO2 reduction with improved stability to the corresponding homogenous system.