HFE-7100 水平层在光滑表面和改性表面上沸腾时的热传递

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Engineering Thermophysics Pub Date : 2024-07-17 DOI:10.1134/S1810232824020024
D. A. Shvetsov, A. N. Pavlenko, V. I. Zhukov
{"title":"HFE-7100 水平层在光滑表面和改性表面上沸腾时的热传递","authors":"D. A. Shvetsov,&nbsp;A. N. Pavlenko,&nbsp;V. I. Zhukov","doi":"10.1134/S1810232824020024","DOIUrl":null,"url":null,"abstract":"<p>Experimental data were obtained on heat transfer in horizontal layers of dielectric liquid HFE-7100 of various heights at atmospheric pressure. The heat transfer during boiling was studied on a smooth stainless steel surface and on a capillary-porous stainless steel coating manufactured by the SLM/SLS 3D printing technology. Comparison of the values of temperature pressure and critical heat flux on the smooth surface and on the capillary-porous coating has shown that in HFE-7100 layers with height below 6 mm, the heat transfer regime changes from pool boiling to boiling in thin layers of liquid. At a heat flux density of 100 kW/m<sup>2</sup>, the temperature difference obtained on the capillary-porous coating was six times lower than that on the smooth surface.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 2","pages":"250 - 268"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Transfer during Boiling in Horizontal Layers of HFE-7100 on Smooth and Modified Surfaces\",\"authors\":\"D. A. Shvetsov,&nbsp;A. N. Pavlenko,&nbsp;V. I. Zhukov\",\"doi\":\"10.1134/S1810232824020024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Experimental data were obtained on heat transfer in horizontal layers of dielectric liquid HFE-7100 of various heights at atmospheric pressure. The heat transfer during boiling was studied on a smooth stainless steel surface and on a capillary-porous stainless steel coating manufactured by the SLM/SLS 3D printing technology. Comparison of the values of temperature pressure and critical heat flux on the smooth surface and on the capillary-porous coating has shown that in HFE-7100 layers with height below 6 mm, the heat transfer regime changes from pool boiling to boiling in thin layers of liquid. At a heat flux density of 100 kW/m<sup>2</sup>, the temperature difference obtained on the capillary-porous coating was six times lower than that on the smooth surface.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"33 2\",\"pages\":\"250 - 268\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232824020024\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824020024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 获得了在常压下不同高度的介电液体 HFE-7100 水平层中的传热实验数据。研究了沸腾时在光滑不锈钢表面和利用 SLM/SLS 三维打印技术制造的毛细管多孔不锈钢涂层上的传热情况。对光滑表面和毛细管多孔涂层上的温度压力和临界热通量值进行比较后发现,在高度低于 6 毫米的 HFE-7100 涂层中,传热机制从液体池沸腾转变为液体薄层沸腾。当热流密度为 100 kW/m2 时,毛细多孔涂层上的温差比光滑表面上的温差低六倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heat Transfer during Boiling in Horizontal Layers of HFE-7100 on Smooth and Modified Surfaces

Experimental data were obtained on heat transfer in horizontal layers of dielectric liquid HFE-7100 of various heights at atmospheric pressure. The heat transfer during boiling was studied on a smooth stainless steel surface and on a capillary-porous stainless steel coating manufactured by the SLM/SLS 3D printing technology. Comparison of the values of temperature pressure and critical heat flux on the smooth surface and on the capillary-porous coating has shown that in HFE-7100 layers with height below 6 mm, the heat transfer regime changes from pool boiling to boiling in thin layers of liquid. At a heat flux density of 100 kW/m2, the temperature difference obtained on the capillary-porous coating was six times lower than that on the smooth surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Thermophysics
Journal of Engineering Thermophysics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.30
自引率
12.50%
发文量
0
审稿时长
3 months
期刊介绍: Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.
期刊最新文献
Dynamics of a Momentumless Turbulent Wake Behind a Sphere in a Turbulized Stratified Medium Insights into Significance of Radiative Inclined MHD on Mixed Convective Viscoelastic Flow of Hybrid Nanofluid over a Permeable Surface with Mass Transpiration Innovative Stainless-Steel Porous Substrate for Metal-Supported Solid Oxide Fuel Cells Diagnostics of Boiling Crisis Experimental Research on Combined Methods against Icing of Wind Turbine Blades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1