兰克-希尔施涡旋管中的流动危机和流动结构的实验研究

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Engineering Thermophysics Pub Date : 2024-07-17 DOI:10.1134/S1810232824020073
M. H. Pravdina, I. K. Kabardin, S. V. Kakaulin, K. S. Zubanov, M. R. Gordienko, G. V. Bakakin, V. G. Meledin, V. I. Polyakova, N. I. Yavorskii
{"title":"兰克-希尔施涡旋管中的流动危机和流动结构的实验研究","authors":"M. H. Pravdina,&nbsp;I. K. Kabardin,&nbsp;S. V. Kakaulin,&nbsp;K. S. Zubanov,&nbsp;M. R. Gordienko,&nbsp;G. V. Bakakin,&nbsp;V. G. Meledin,&nbsp;V. I. Polyakova,&nbsp;N. I. Yavorskii","doi":"10.1134/S1810232824020073","DOIUrl":null,"url":null,"abstract":"<p>The work investigates the relationship between the energy separation in a Ranque–Hilsch tube and flow crisis manifestation in a translational swirling flow. The laser Doppler anemometry was used for the measurement of the transverse profiles of circumferential and longitudinal velocities in the mid-section along the entire length of the working channel in a vortex tube with a square cross-section. Analysis of the experimental data revealed signs of a series of hydraulic jumps that realize structural transitions from supercritical flow regimes of a near-wall swirl flow with longitudinal velocity exceeding the critical one to subcritical regimes, the longitudinal velocity in which is less than the critical one. The identified features suggest that there may be an increase in temperature in the near-wall flow due to the conversion of excess kinetic energy released during hydraulic jumps into heat, while conserving the momentum flow. A number of phenomena associated with the Ranque effect are discussed within the concept of crisis of a translational swirling flow and the more general concept of vortex breakdown.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 2","pages":"316 - 328"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Flow Crisis and Flow Structure in Ranque–Hilsch Vortex Tube\",\"authors\":\"M. H. Pravdina,&nbsp;I. K. Kabardin,&nbsp;S. V. Kakaulin,&nbsp;K. S. Zubanov,&nbsp;M. R. Gordienko,&nbsp;G. V. Bakakin,&nbsp;V. G. Meledin,&nbsp;V. I. Polyakova,&nbsp;N. I. Yavorskii\",\"doi\":\"10.1134/S1810232824020073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The work investigates the relationship between the energy separation in a Ranque–Hilsch tube and flow crisis manifestation in a translational swirling flow. The laser Doppler anemometry was used for the measurement of the transverse profiles of circumferential and longitudinal velocities in the mid-section along the entire length of the working channel in a vortex tube with a square cross-section. Analysis of the experimental data revealed signs of a series of hydraulic jumps that realize structural transitions from supercritical flow regimes of a near-wall swirl flow with longitudinal velocity exceeding the critical one to subcritical regimes, the longitudinal velocity in which is less than the critical one. The identified features suggest that there may be an increase in temperature in the near-wall flow due to the conversion of excess kinetic energy released during hydraulic jumps into heat, while conserving the momentum flow. A number of phenomena associated with the Ranque effect are discussed within the concept of crisis of a translational swirling flow and the more general concept of vortex breakdown.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"33 2\",\"pages\":\"316 - 328\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232824020073\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824020073","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 这项工作研究了兰克-希尔施管中的能量分离与平移漩涡流中的流动危机表现之间的关系。采用激光多普勒风速仪测量了方形横截面涡流管工作通道全长中段的横向圆周速度和纵向速度剖面。对实验数据的分析显示了一系列水力跃迁的迹象,实现了从纵向速度超过临界值的近壁漩涡流超临界流动状态到纵向速度小于临界值的亚临界状态的结构转变。所发现的特征表明,在保持动量流的同时,由于水力跃迁时释放的多余动能转化为热能,近壁流的温度可能会升高。在平移漩涡流危机概念和更一般的漩涡破裂概念中,讨论了与兰克效应相关的一些现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Study of Flow Crisis and Flow Structure in Ranque–Hilsch Vortex Tube

The work investigates the relationship between the energy separation in a Ranque–Hilsch tube and flow crisis manifestation in a translational swirling flow. The laser Doppler anemometry was used for the measurement of the transverse profiles of circumferential and longitudinal velocities in the mid-section along the entire length of the working channel in a vortex tube with a square cross-section. Analysis of the experimental data revealed signs of a series of hydraulic jumps that realize structural transitions from supercritical flow regimes of a near-wall swirl flow with longitudinal velocity exceeding the critical one to subcritical regimes, the longitudinal velocity in which is less than the critical one. The identified features suggest that there may be an increase in temperature in the near-wall flow due to the conversion of excess kinetic energy released during hydraulic jumps into heat, while conserving the momentum flow. A number of phenomena associated with the Ranque effect are discussed within the concept of crisis of a translational swirling flow and the more general concept of vortex breakdown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Thermophysics
Journal of Engineering Thermophysics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.30
自引率
12.50%
发文量
0
审稿时长
3 months
期刊介绍: Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.
期刊最新文献
Features of Oxidation of Bismuth by High-Density Water-Oxygen Fluid LDA-Based Experimental Investigation of Velocity Pulsations in the Vortex Tube Hysteresis Phenomena at Boiling in Liquid Film Flowing down the Tubes with Microarc Oxidation Coating Investigation of the Local Equilibrium Approximation in a Planar Momentumless Turbulent Wake in a Passively Stratified Fluid Experimental Study of Characteristics of Activated Carbon Produced from Pine Nut Shells by Pyrolysis Technology Followed by Steam-Gas Activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1