{"title":"人类酸碱紊乱诊断和管理中的误区:实验室医学的视角。","authors":"Henry Carlton, Kate E Shipman","doi":"10.1136/jcp-2024-209423","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnostic errors affect patient management, and as blood gas analysis is mainly performed without the laboratory, users must be aware of the potential pitfalls. The aim was to provide a summary of common issues users should be aware of.A narrative review was performed using online databases such as PubMed, Google Scholar and reference lists of identified papers. Language was limited to English.Errors can be pre-analytical, analytical or post-analytical. Samples should be analysed within 15 min and kept at room temperature and taken at least 15-30 min after changes to inspired oxygen and ventilator settings, for accurate oxygen measurement. Plastic syringes are more oxygen permeable if chilled. Currently, analysers run arterial, venous, capillary and intraosseous samples, but variations in reference intervals may not be appreciated or reported. Analytical issues can arise from interference secondary to drugs, such as spurious hyperchloraemia with salicylate and hyperlactataemia with ethylene glycol, or pathology, such as spurious hypoxaemia with leucocytosis and alkalosis in hypoalbuminaemia. Interpretation is complicated by result adjustment, for example, temperature (alpha-stat adjustment may overestimate partial pressure of carbon dioxide (pCO<sub>2</sub>) in hypothermia, for example), and inappropriate reference intervals, for example, in pregnancy bicarbonate, and pCO<sub>2</sub> ranges should be lowered.Lack of appreciation for patient-specific and circumstance-specific reference intervals, including extremes of age and altitude, and transformation of measurements to standard conditions can lead to inappropriate assumptions. It is vitally important for users to optimise specimen collection, appreciate the analytical methods and understand when reference intervals are applicable to their specimen type, clinical question or patient.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"772-778"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pitfalls in the diagnosis and management of acid-base disorders in humans: a laboratory medicine perspective.\",\"authors\":\"Henry Carlton, Kate E Shipman\",\"doi\":\"10.1136/jcp-2024-209423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diagnostic errors affect patient management, and as blood gas analysis is mainly performed without the laboratory, users must be aware of the potential pitfalls. The aim was to provide a summary of common issues users should be aware of.A narrative review was performed using online databases such as PubMed, Google Scholar and reference lists of identified papers. Language was limited to English.Errors can be pre-analytical, analytical or post-analytical. Samples should be analysed within 15 min and kept at room temperature and taken at least 15-30 min after changes to inspired oxygen and ventilator settings, for accurate oxygen measurement. Plastic syringes are more oxygen permeable if chilled. Currently, analysers run arterial, venous, capillary and intraosseous samples, but variations in reference intervals may not be appreciated or reported. Analytical issues can arise from interference secondary to drugs, such as spurious hyperchloraemia with salicylate and hyperlactataemia with ethylene glycol, or pathology, such as spurious hypoxaemia with leucocytosis and alkalosis in hypoalbuminaemia. Interpretation is complicated by result adjustment, for example, temperature (alpha-stat adjustment may overestimate partial pressure of carbon dioxide (pCO<sub>2</sub>) in hypothermia, for example), and inappropriate reference intervals, for example, in pregnancy bicarbonate, and pCO<sub>2</sub> ranges should be lowered.Lack of appreciation for patient-specific and circumstance-specific reference intervals, including extremes of age and altitude, and transformation of measurements to standard conditions can lead to inappropriate assumptions. It is vitally important for users to optimise specimen collection, appreciate the analytical methods and understand when reference intervals are applicable to their specimen type, clinical question or patient.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"772-778\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jcp-2024-209423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jcp-2024-209423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Pitfalls in the diagnosis and management of acid-base disorders in humans: a laboratory medicine perspective.
Diagnostic errors affect patient management, and as blood gas analysis is mainly performed without the laboratory, users must be aware of the potential pitfalls. The aim was to provide a summary of common issues users should be aware of.A narrative review was performed using online databases such as PubMed, Google Scholar and reference lists of identified papers. Language was limited to English.Errors can be pre-analytical, analytical or post-analytical. Samples should be analysed within 15 min and kept at room temperature and taken at least 15-30 min after changes to inspired oxygen and ventilator settings, for accurate oxygen measurement. Plastic syringes are more oxygen permeable if chilled. Currently, analysers run arterial, venous, capillary and intraosseous samples, but variations in reference intervals may not be appreciated or reported. Analytical issues can arise from interference secondary to drugs, such as spurious hyperchloraemia with salicylate and hyperlactataemia with ethylene glycol, or pathology, such as spurious hypoxaemia with leucocytosis and alkalosis in hypoalbuminaemia. Interpretation is complicated by result adjustment, for example, temperature (alpha-stat adjustment may overestimate partial pressure of carbon dioxide (pCO2) in hypothermia, for example), and inappropriate reference intervals, for example, in pregnancy bicarbonate, and pCO2 ranges should be lowered.Lack of appreciation for patient-specific and circumstance-specific reference intervals, including extremes of age and altitude, and transformation of measurements to standard conditions can lead to inappropriate assumptions. It is vitally important for users to optimise specimen collection, appreciate the analytical methods and understand when reference intervals are applicable to their specimen type, clinical question or patient.