癌症中的 T 细胞功能障碍和治疗干预。

IF 27.7 1区 医学 Q1 IMMUNOLOGY Nature Immunology Pub Date : 2024-07-18 DOI:10.1038/s41590-024-01896-9
Caitlin C. Zebley, Dietmar Zehn, Stephen Gottschalk, Hongbo Chi
{"title":"癌症中的 T 细胞功能障碍和治疗干预。","authors":"Caitlin C. Zebley, Dietmar Zehn, Stephen Gottschalk, Hongbo Chi","doi":"10.1038/s41590-024-01896-9","DOIUrl":null,"url":null,"abstract":"Recent advances in immunotherapy have affirmed the curative potential of T cell-based approaches for treating relapsed and refractory cancers. However, the therapeutic efficacy is limited in part owing to the ability of cancers to evade immunosurveillance and adapt to immunological pressure. In this Review, we provide a brief overview of cancer-mediated immunosuppressive mechanisms with a specific focus on the repression of the surveillance and effector function of T cells. We discuss CD8+ T cell exhaustion and functional heterogeneity and describe strategies for targeting the molecular checkpoints that restrict T cell differentiation and effector function to bolster immunotherapeutic effects. We also delineate the emerging contributions of the tumor microenvironment to T cell metabolism and conclude by highlighting discovery-based approaches for developing future cellular therapies. Continued exploration of T cell biology and engineering hold great promise for advancing therapeutic interventions for cancer. In this Review, the authors analyze functional and dysfunctional T cell features to make sense of cancer immunotherapy efficacy and how to improve it.","PeriodicalId":19032,"journal":{"name":"Nature Immunology","volume":null,"pages":null},"PeriodicalIF":27.7000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T cell dysfunction and therapeutic intervention in cancer\",\"authors\":\"Caitlin C. Zebley, Dietmar Zehn, Stephen Gottschalk, Hongbo Chi\",\"doi\":\"10.1038/s41590-024-01896-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in immunotherapy have affirmed the curative potential of T cell-based approaches for treating relapsed and refractory cancers. However, the therapeutic efficacy is limited in part owing to the ability of cancers to evade immunosurveillance and adapt to immunological pressure. In this Review, we provide a brief overview of cancer-mediated immunosuppressive mechanisms with a specific focus on the repression of the surveillance and effector function of T cells. We discuss CD8+ T cell exhaustion and functional heterogeneity and describe strategies for targeting the molecular checkpoints that restrict T cell differentiation and effector function to bolster immunotherapeutic effects. We also delineate the emerging contributions of the tumor microenvironment to T cell metabolism and conclude by highlighting discovery-based approaches for developing future cellular therapies. Continued exploration of T cell biology and engineering hold great promise for advancing therapeutic interventions for cancer. In this Review, the authors analyze functional and dysfunctional T cell features to make sense of cancer immunotherapy efficacy and how to improve it.\",\"PeriodicalId\":19032,\"journal\":{\"name\":\"Nature Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41590-024-01896-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41590-024-01896-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

免疫疗法的最新进展证实,以 T 细胞为基础的方法具有治疗复发和难治性癌症的潜力。然而,由于癌症具有逃避免疫监视和适应免疫压力的能力,其疗效受到一定限制。在本综述中,我们将简要概述癌症介导的免疫抑制机制,并特别关注对 T 细胞监控和效应功能的抑制。我们讨论了 CD8+ T 细胞衰竭和功能异质性,并介绍了针对限制 T 细胞分化和效应功能的分子检查点以增强免疫治疗效果的策略。我们还描述了肿瘤微环境对 T 细胞代谢的新贡献,最后强调了开发未来细胞疗法的发现型方法。对 T 细胞生物学和工程学的持续探索为推进癌症治疗干预措施带来了巨大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
T cell dysfunction and therapeutic intervention in cancer
Recent advances in immunotherapy have affirmed the curative potential of T cell-based approaches for treating relapsed and refractory cancers. However, the therapeutic efficacy is limited in part owing to the ability of cancers to evade immunosurveillance and adapt to immunological pressure. In this Review, we provide a brief overview of cancer-mediated immunosuppressive mechanisms with a specific focus on the repression of the surveillance and effector function of T cells. We discuss CD8+ T cell exhaustion and functional heterogeneity and describe strategies for targeting the molecular checkpoints that restrict T cell differentiation and effector function to bolster immunotherapeutic effects. We also delineate the emerging contributions of the tumor microenvironment to T cell metabolism and conclude by highlighting discovery-based approaches for developing future cellular therapies. Continued exploration of T cell biology and engineering hold great promise for advancing therapeutic interventions for cancer. In this Review, the authors analyze functional and dysfunctional T cell features to make sense of cancer immunotherapy efficacy and how to improve it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Immunology
Nature Immunology 医学-免疫学
CiteScore
40.00
自引率
2.30%
发文量
248
审稿时长
4-8 weeks
期刊介绍: Nature Immunology is a monthly journal that publishes the highest quality research in all areas of immunology. The editorial decisions are made by a team of full-time professional editors. The journal prioritizes work that provides translational and/or fundamental insight into the workings of the immune system. It covers a wide range of topics including innate immunity and inflammation, development, immune receptors, signaling and apoptosis, antigen presentation, gene regulation and recombination, cellular and systemic immunity, vaccines, immune tolerance, autoimmunity, tumor immunology, and microbial immunopathology. In addition to publishing significant original research, Nature Immunology also includes comments, News and Views, research highlights, matters arising from readers, and reviews of the literature. The journal serves as a major conduit of top-quality information for the immunology community.
期刊最新文献
Monocyte-derived macrophages are too much of a good thing in lung fibrosis AI and immunology as a new research paradigm Profibrotic monocyte-derived alveolar macrophages are expanded in patients with persistent respiratory symptoms and radiographic abnormalities after COVID-19 DNA-sensing pathways in health, autoinflammatory and autoimmune diseases GPR34 is a metabolic immune checkpoint for ILC1-mediated antitumor immunity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1