{"title":"陆生等脚类动物(甲壳纲,Oniscidea)呼吸空气器官发育过程的比较:对其进化起源的影响。","authors":"Naoto Inui, Toru Miura","doi":"10.1186/s13227-024-00229-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The acquisition of air-breathing organs is one of the key innovations for terrestrialization in animals. Terrestrial isopods, a crustacean lineage, can be interesting models to study the evolution of respiratory organs, as they exhibit varieties of air-breathing structures according to their habitats. However, the evolutionary processes and origins of these structures are unclear, due to the lack of information about their developmental processes. To understand the developmental mechanisms, we compared the developmental processes forming different respiratory structures in three isopod species, i.e., 'uncovered lungs' in Nagurus okinawaensis (Trachelipodidae), 'dorsal respiratory fields' in Alloniscus balssi (Alloniscidae), and pleopods without respiratory structures in Armadilloniscus cf. ellipticus (Detonidae).</p><p><strong>Results: </strong>In N. okinawaensis with uncovered lungs, epithelium and cuticle around the proximal hemolymph sinus developed into respiratory structures at post-manca juvenile stages. On the other hand, in Al. balssi with dorsal respiratory fields, the region for the future respiratory structure was already present at manca 1 stage, immediately after hatching, where the lateral protrusion of ventral epithelium occurred, forming the respiratory structure. Furthermore, on pleopods in Ar. cf. ellipticus, only thickened dorsal cuticle and the proximal hemolymph sinus developed during postembryonic development without special morphogenesis.</p><p><strong>Conclusions: </strong>This study shows that the respiratory structures in terrestrial isopods develop primarily by postembryonic epithelial modifications, but the epithelial positions developing into respiratory structures differ between uncovered lungs and dorsal respiratory fields. This suggests that these two types of respiratory structures do not result from simple differences in the degree of development. Future analysis of molecular developmental mechanisms will help determine whether these are the result of heterotopic changes or have different evolutionary origins. Overall, this study provides fundamental information for evolutionary developmental studies of isopod respiratory organs.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"15 1","pages":"9"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264735/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparisons of developmental processes of air-breathing organs among terrestrial isopods (Crustacea, Oniscidea): implications for their evolutionary origins.\",\"authors\":\"Naoto Inui, Toru Miura\",\"doi\":\"10.1186/s13227-024-00229-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The acquisition of air-breathing organs is one of the key innovations for terrestrialization in animals. Terrestrial isopods, a crustacean lineage, can be interesting models to study the evolution of respiratory organs, as they exhibit varieties of air-breathing structures according to their habitats. However, the evolutionary processes and origins of these structures are unclear, due to the lack of information about their developmental processes. To understand the developmental mechanisms, we compared the developmental processes forming different respiratory structures in three isopod species, i.e., 'uncovered lungs' in Nagurus okinawaensis (Trachelipodidae), 'dorsal respiratory fields' in Alloniscus balssi (Alloniscidae), and pleopods without respiratory structures in Armadilloniscus cf. ellipticus (Detonidae).</p><p><strong>Results: </strong>In N. okinawaensis with uncovered lungs, epithelium and cuticle around the proximal hemolymph sinus developed into respiratory structures at post-manca juvenile stages. On the other hand, in Al. balssi with dorsal respiratory fields, the region for the future respiratory structure was already present at manca 1 stage, immediately after hatching, where the lateral protrusion of ventral epithelium occurred, forming the respiratory structure. Furthermore, on pleopods in Ar. cf. ellipticus, only thickened dorsal cuticle and the proximal hemolymph sinus developed during postembryonic development without special morphogenesis.</p><p><strong>Conclusions: </strong>This study shows that the respiratory structures in terrestrial isopods develop primarily by postembryonic epithelial modifications, but the epithelial positions developing into respiratory structures differ between uncovered lungs and dorsal respiratory fields. This suggests that these two types of respiratory structures do not result from simple differences in the degree of development. Future analysis of molecular developmental mechanisms will help determine whether these are the result of heterotopic changes or have different evolutionary origins. Overall, this study provides fundamental information for evolutionary developmental studies of isopod respiratory organs.</p>\",\"PeriodicalId\":49076,\"journal\":{\"name\":\"Evodevo\",\"volume\":\"15 1\",\"pages\":\"9\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264735/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evodevo\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13227-024-00229-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-024-00229-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Comparisons of developmental processes of air-breathing organs among terrestrial isopods (Crustacea, Oniscidea): implications for their evolutionary origins.
Background: The acquisition of air-breathing organs is one of the key innovations for terrestrialization in animals. Terrestrial isopods, a crustacean lineage, can be interesting models to study the evolution of respiratory organs, as they exhibit varieties of air-breathing structures according to their habitats. However, the evolutionary processes and origins of these structures are unclear, due to the lack of information about their developmental processes. To understand the developmental mechanisms, we compared the developmental processes forming different respiratory structures in three isopod species, i.e., 'uncovered lungs' in Nagurus okinawaensis (Trachelipodidae), 'dorsal respiratory fields' in Alloniscus balssi (Alloniscidae), and pleopods without respiratory structures in Armadilloniscus cf. ellipticus (Detonidae).
Results: In N. okinawaensis with uncovered lungs, epithelium and cuticle around the proximal hemolymph sinus developed into respiratory structures at post-manca juvenile stages. On the other hand, in Al. balssi with dorsal respiratory fields, the region for the future respiratory structure was already present at manca 1 stage, immediately after hatching, where the lateral protrusion of ventral epithelium occurred, forming the respiratory structure. Furthermore, on pleopods in Ar. cf. ellipticus, only thickened dorsal cuticle and the proximal hemolymph sinus developed during postembryonic development without special morphogenesis.
Conclusions: This study shows that the respiratory structures in terrestrial isopods develop primarily by postembryonic epithelial modifications, but the epithelial positions developing into respiratory structures differ between uncovered lungs and dorsal respiratory fields. This suggests that these two types of respiratory structures do not result from simple differences in the degree of development. Future analysis of molecular developmental mechanisms will help determine whether these are the result of heterotopic changes or have different evolutionary origins. Overall, this study provides fundamental information for evolutionary developmental studies of isopod respiratory organs.
期刊介绍:
EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo.
The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution.
All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology