{"title":"全基因组系统进化组学有助于确定 Zygothrica 属群(双翅目,果蝇科)的系统进化位置以及以前不一致的原因。","authors":"Maiara Hartwig Bessa , Marco Silva Gottschalk , Lizandra Jaqueline Robe","doi":"10.1016/j.ympev.2024.108158","DOIUrl":null,"url":null,"abstract":"<div><p>Incomplete Lineage Sorting (ILS) and introgression are among the two main factors causing incongruence between gene and species trees. Advances in phylogenomic studies have allowed us to overcome most of these issues, providing reliable phylogenetic hypotheses while revealing the underlying evolutionary scenario. Across the last century, many incongruent phylogenetic reconstructions were recovered for Drosophilidae, employing a limited sampling of genetic markers or species. In these studies, the monophyly and the phylogenetic positioning of the <em>Zygothrica</em> genus group stood out as one of the most controversial questions. Thus, here, we addressed these issues using a phylogenomic approach, while accessing the influence of ILS and introgressions on the diversification of these species and addressing the spatio-temporal scenario associated with their evolution. For this task, the genomes of nine specimens from six Neotropical species belonging to the <em>Zygothrica</em> genus group were sequenced and evaluated in a phylogenetic framework encompassing other 39 species of Drosophilidae. Nucleotide and amino acid sequences recovered for a set of 2,534 single-copy genes by BUSCO were employed to reconstruct maximum likelihood (ML) concatenated and multi-species coalescent (MSC) trees. Likelihood mapping, quartet sampling, and reticulation tests were employed to infer the level and causes of incongruence. Lastly, a penalized-likelihood molecular clock strategy with fossil calibrations was performed to infer divergence times. Taken together, our results recovered the subdivision of <em>Drosophila</em> into six different lineages, one of which clusters species of the <em>Zygothrica</em> genus group (except for <em>H. duncani</em>). The divergence of this lineage was dated to Oligocene ∼ 31 Mya and seems to have occurred in the same timeframe as other key diversification within <em>Drosophila</em>. According to the concatenated and MSC strategies, this lineage is sister to the clade joining <em>Drosophila</em> (<em>Siphlodora</em>) with the Hawaiian <em>Drosophila</em> and <em>Scaptomyza</em>. Likelihood mapping, quartet sampling, reticulation reconstructions as well as introgression tests revealed that this lineage was the target of several hybridization events involving the ancestors of different <em>Drosophila</em> lineages. Thus, our results generally show introgression as a major source of previous incongruence. Nevertheless, the similar diversification times recovered for several of the Neotropical <em>Drosophila</em> lineages also support the scenario of multiple and simultaneous diversifications taking place at the base of Drosophilidae phylogeny, at least in the Neotropics.</p></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"199 ","pages":"Article 108158"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole genome phylogenomics helps to resolve the phylogenetic position of the Zygothrica genus group (Diptera, Drosophilidae) and the causes of previous incongruences\",\"authors\":\"Maiara Hartwig Bessa , Marco Silva Gottschalk , Lizandra Jaqueline Robe\",\"doi\":\"10.1016/j.ympev.2024.108158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Incomplete Lineage Sorting (ILS) and introgression are among the two main factors causing incongruence between gene and species trees. Advances in phylogenomic studies have allowed us to overcome most of these issues, providing reliable phylogenetic hypotheses while revealing the underlying evolutionary scenario. Across the last century, many incongruent phylogenetic reconstructions were recovered for Drosophilidae, employing a limited sampling of genetic markers or species. In these studies, the monophyly and the phylogenetic positioning of the <em>Zygothrica</em> genus group stood out as one of the most controversial questions. Thus, here, we addressed these issues using a phylogenomic approach, while accessing the influence of ILS and introgressions on the diversification of these species and addressing the spatio-temporal scenario associated with their evolution. For this task, the genomes of nine specimens from six Neotropical species belonging to the <em>Zygothrica</em> genus group were sequenced and evaluated in a phylogenetic framework encompassing other 39 species of Drosophilidae. Nucleotide and amino acid sequences recovered for a set of 2,534 single-copy genes by BUSCO were employed to reconstruct maximum likelihood (ML) concatenated and multi-species coalescent (MSC) trees. Likelihood mapping, quartet sampling, and reticulation tests were employed to infer the level and causes of incongruence. Lastly, a penalized-likelihood molecular clock strategy with fossil calibrations was performed to infer divergence times. Taken together, our results recovered the subdivision of <em>Drosophila</em> into six different lineages, one of which clusters species of the <em>Zygothrica</em> genus group (except for <em>H. duncani</em>). The divergence of this lineage was dated to Oligocene ∼ 31 Mya and seems to have occurred in the same timeframe as other key diversification within <em>Drosophila</em>. According to the concatenated and MSC strategies, this lineage is sister to the clade joining <em>Drosophila</em> (<em>Siphlodora</em>) with the Hawaiian <em>Drosophila</em> and <em>Scaptomyza</em>. Likelihood mapping, quartet sampling, reticulation reconstructions as well as introgression tests revealed that this lineage was the target of several hybridization events involving the ancestors of different <em>Drosophila</em> lineages. Thus, our results generally show introgression as a major source of previous incongruence. Nevertheless, the similar diversification times recovered for several of the Neotropical <em>Drosophila</em> lineages also support the scenario of multiple and simultaneous diversifications taking place at the base of Drosophilidae phylogeny, at least in the Neotropics.</p></div>\",\"PeriodicalId\":56109,\"journal\":{\"name\":\"Molecular Phylogenetics and Evolution\",\"volume\":\"199 \",\"pages\":\"Article 108158\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Phylogenetics and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1055790324001507\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790324001507","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Whole genome phylogenomics helps to resolve the phylogenetic position of the Zygothrica genus group (Diptera, Drosophilidae) and the causes of previous incongruences
Incomplete Lineage Sorting (ILS) and introgression are among the two main factors causing incongruence between gene and species trees. Advances in phylogenomic studies have allowed us to overcome most of these issues, providing reliable phylogenetic hypotheses while revealing the underlying evolutionary scenario. Across the last century, many incongruent phylogenetic reconstructions were recovered for Drosophilidae, employing a limited sampling of genetic markers or species. In these studies, the monophyly and the phylogenetic positioning of the Zygothrica genus group stood out as one of the most controversial questions. Thus, here, we addressed these issues using a phylogenomic approach, while accessing the influence of ILS and introgressions on the diversification of these species and addressing the spatio-temporal scenario associated with their evolution. For this task, the genomes of nine specimens from six Neotropical species belonging to the Zygothrica genus group were sequenced and evaluated in a phylogenetic framework encompassing other 39 species of Drosophilidae. Nucleotide and amino acid sequences recovered for a set of 2,534 single-copy genes by BUSCO were employed to reconstruct maximum likelihood (ML) concatenated and multi-species coalescent (MSC) trees. Likelihood mapping, quartet sampling, and reticulation tests were employed to infer the level and causes of incongruence. Lastly, a penalized-likelihood molecular clock strategy with fossil calibrations was performed to infer divergence times. Taken together, our results recovered the subdivision of Drosophila into six different lineages, one of which clusters species of the Zygothrica genus group (except for H. duncani). The divergence of this lineage was dated to Oligocene ∼ 31 Mya and seems to have occurred in the same timeframe as other key diversification within Drosophila. According to the concatenated and MSC strategies, this lineage is sister to the clade joining Drosophila (Siphlodora) with the Hawaiian Drosophila and Scaptomyza. Likelihood mapping, quartet sampling, reticulation reconstructions as well as introgression tests revealed that this lineage was the target of several hybridization events involving the ancestors of different Drosophila lineages. Thus, our results generally show introgression as a major source of previous incongruence. Nevertheless, the similar diversification times recovered for several of the Neotropical Drosophila lineages also support the scenario of multiple and simultaneous diversifications taking place at the base of Drosophilidae phylogeny, at least in the Neotropics.
期刊介绍:
Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.