{"title":"各向同性材料的自由形态超材料设计","authors":"Juan Manuel Restrepo-Flórez","doi":"10.1038/s43588-024-00663-y","DOIUrl":null,"url":null,"abstract":"A recent study proposes a computational method for the design of free-form metamaterials systems. The method simplifies the design process by avoiding the use of anisotropic materials that are usually required for the conventional methods. The method can be applied in designing both two-dimensional and three-dimensional metamaterials that are subject to multiple physical fields.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 7","pages":"477-478"},"PeriodicalIF":12.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free-form metamaterials design with isotropic materials\",\"authors\":\"Juan Manuel Restrepo-Flórez\",\"doi\":\"10.1038/s43588-024-00663-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent study proposes a computational method for the design of free-form metamaterials systems. The method simplifies the design process by avoiding the use of anisotropic materials that are usually required for the conventional methods. The method can be applied in designing both two-dimensional and three-dimensional metamaterials that are subject to multiple physical fields.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 7\",\"pages\":\"477-478\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00663-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00663-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Free-form metamaterials design with isotropic materials
A recent study proposes a computational method for the design of free-form metamaterials systems. The method simplifies the design process by avoiding the use of anisotropic materials that are usually required for the conventional methods. The method can be applied in designing both two-dimensional and three-dimensional metamaterials that are subject to multiple physical fields.